Integrable and nonintegrable classical spin clusters View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-09

AUTHORS

E. Magyari, H. Thomas, R. Weber, C. Kaufman, G. Müller

ABSTRACT

The nonlinear dynamics is investigated for a system ofN classical spins. This represents a Hamiltonian system withN degrees of freedom. According to the Liouville theorem, the complete integrability of such a system requires the existence ofN independent integrals of the motion which are mutually in involution. As a basis for the investigation of regular and chaotic spin motions, we have examined in detail the problem of integrability of a two-spin system. It represents the simplest autonomous spin system for which the integrability problem is nontrivial. We have shown that a pair of spins coupled by an anisotropic exchange interaction represents a completely integrable system for any values of the coupling constants. The second integral of the motion (in addition to the Hamiltonian), which ensures the complete integrability, turns out to be quadratic in the spin variables. If, in addition to the exchange anisotropy also singlesite anisotropy terms are included in the two-spin Hamiltonian, a second integral of the motion quadratic in the spin variables exists and thus guarantees integrability, only if the model constants satisfy a certain condition. Our numerical calculations strongly suggest that the violation of this condition implies not only the nonexistence of a quadratic integral, but the nonexistence of a second independent integral of motion in general. Finally, as an example of a completely integrableN-spin system we present the Kittel-Shore model of uniformly interacting spins, for which we have constructed theN independent integrals in involution as well as the action-angle variables explicitly. More... »

PAGES

363-374

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01303725

DOI

http://dx.doi.org/10.1007/bf01303725

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017415994


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Physik der Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.6612.3", 
          "name": [
            "Institut f\u00fcr Physik der Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magyari", 
        "givenName": "E.", 
        "id": "sg:person.010411043343.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010411043343.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Physik der Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.6612.3", 
          "name": [
            "Institut f\u00fcr Physik der Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomas", 
        "givenName": "H.", 
        "id": "sg:person.0711120037.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711120037.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Physik der Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.6612.3", 
          "name": [
            "Institut f\u00fcr Physik der Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weber", 
        "givenName": "R.", 
        "id": "sg:person.014371035671.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014371035671.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Rhode Island, 02881-0817, Kingston, Rhode Island, USA", 
          "id": "http://www.grid.ac/institutes/grid.20431.34", 
          "name": [
            "Department of Physics, University of Rhode Island, 02881-0817, Kingston, Rhode Island, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaufman", 
        "givenName": "C.", 
        "id": "sg:person.016561357271.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016561357271.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Rhode Island, 02881-0817, Kingston, Rhode Island, USA", 
          "id": "http://www.grid.ac/institutes/grid.20431.34", 
          "name": [
            "Department of Physics, University of Rhode Island, 02881-0817, Kingston, Rhode Island, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00fcller", 
        "givenName": "G.", 
        "id": "sg:person.01221016753.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221016753.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01312650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030634392", 
          "https://doi.org/10.1007/bf01312650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4257-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005432200", 
          "https://doi.org/10.1007/978-1-4757-4257-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-81509-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021666513", 
          "https://doi.org/10.1007/978-3-642-81509-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-1693-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035545882", 
          "https://doi.org/10.1007/978-1-4757-1693-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1987-09", 
    "datePublishedReg": "1987-09-01", 
    "description": "The nonlinear dynamics is investigated for a system ofN classical spins. This represents a Hamiltonian system withN degrees of freedom. According to the Liouville theorem, the complete integrability of such a system requires the existence ofN independent integrals of the motion which are mutually in involution. As a basis for the investigation of regular and chaotic spin motions, we have examined in detail the problem of integrability of a two-spin system. It represents the simplest autonomous spin system for which the integrability problem is nontrivial. We have shown that a pair of spins coupled by an anisotropic exchange interaction represents a completely integrable system for any values of the coupling constants. The second integral of the motion (in addition to the Hamiltonian), which ensures the complete integrability, turns out to be quadratic in the spin variables. If, in addition to the exchange anisotropy also singlesite anisotropy terms are included in the two-spin Hamiltonian, a second integral of the motion quadratic in the spin variables exists and thus guarantees integrability, only if the model constants satisfy a certain condition. Our numerical calculations strongly suggest that the violation of this condition implies not only the nonexistence of a quadratic integral, but the nonexistence of a second independent integral of motion in general. Finally, as an example of a completely integrableN-spin system we present the Kittel-Shore model of uniformly interacting spins, for which we have constructed theN independent integrals in involution as well as the action-angle variables explicitly.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01303725", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1285002", 
        "issn": [
          "0722-3277", 
          "1431-584X"
        ], 
        "name": "Zeitschrift f\u00fcr Physik B Condensed Matter", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "65"
      }
    ], 
    "keywords": [
      "complete integrability", 
      "spin variables", 
      "independent integrals", 
      "second integral", 
      "second independent integral", 
      "problem of integrability", 
      "action-angle variables", 
      "two-spin Hamiltonian", 
      "pair of spins", 
      "two-spin system", 
      "anisotropic exchange interaction", 
      "integrable systems", 
      "classical spins", 
      "quadratic integral", 
      "spin clusters", 
      "Liouville theorem", 
      "integrability problem", 
      "spin motion", 
      "anisotropy term", 
      "spin systems", 
      "nonlinear dynamics", 
      "exchange anisotropy", 
      "integrability", 
      "exchange interaction", 
      "integrals", 
      "numerical calculations", 
      "spin", 
      "motion", 
      "nonexistence", 
      "model constants", 
      "certain conditions", 
      "coupling constants", 
      "theorem", 
      "Hamiltonian", 
      "problem", 
      "variables", 
      "anisotropy", 
      "system", 
      "involution", 
      "dynamics", 
      "constants", 
      "calculations", 
      "freedom", 
      "model", 
      "terms", 
      "conditions", 
      "violation", 
      "clusters", 
      "detail", 
      "pairs", 
      "values", 
      "basis", 
      "degree", 
      "interaction", 
      "investigation", 
      "addition", 
      "example"
    ], 
    "name": "Integrable and nonintegrable classical spin clusters", 
    "pagination": "363-374", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017415994"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01303725"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01303725", 
      "https://app.dimensions.ai/details/publication/pub.1017415994"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_185.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01303725"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01303725'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01303725'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01303725'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01303725'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      21 PREDICATES      86 URIs      74 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01303725 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N66b6e1d293644168a82f5128948fe183
4 schema:citation sg:pub.10.1007/978-1-4757-1693-1
5 sg:pub.10.1007/978-1-4757-4257-2
6 sg:pub.10.1007/978-3-642-81509-6
7 sg:pub.10.1007/bf01312650
8 schema:datePublished 1987-09
9 schema:datePublishedReg 1987-09-01
10 schema:description The nonlinear dynamics is investigated for a system ofN classical spins. This represents a Hamiltonian system withN degrees of freedom. According to the Liouville theorem, the complete integrability of such a system requires the existence ofN independent integrals of the motion which are mutually in involution. As a basis for the investigation of regular and chaotic spin motions, we have examined in detail the problem of integrability of a two-spin system. It represents the simplest autonomous spin system for which the integrability problem is nontrivial. We have shown that a pair of spins coupled by an anisotropic exchange interaction represents a completely integrable system for any values of the coupling constants. The second integral of the motion (in addition to the Hamiltonian), which ensures the complete integrability, turns out to be quadratic in the spin variables. If, in addition to the exchange anisotropy also singlesite anisotropy terms are included in the two-spin Hamiltonian, a second integral of the motion quadratic in the spin variables exists and thus guarantees integrability, only if the model constants satisfy a certain condition. Our numerical calculations strongly suggest that the violation of this condition implies not only the nonexistence of a quadratic integral, but the nonexistence of a second independent integral of motion in general. Finally, as an example of a completely integrableN-spin system we present the Kittel-Shore model of uniformly interacting spins, for which we have constructed theN independent integrals in involution as well as the action-angle variables explicitly.
11 schema:genre article
12 schema:isAccessibleForFree false
13 schema:isPartOf Nbd596cf3eae64707a7a16788ebb2607c
14 Ned24ff48a01b479ea448dc3552d7c3d7
15 sg:journal.1285002
16 schema:keywords Hamiltonian
17 Liouville theorem
18 action-angle variables
19 addition
20 anisotropic exchange interaction
21 anisotropy
22 anisotropy term
23 basis
24 calculations
25 certain conditions
26 classical spins
27 clusters
28 complete integrability
29 conditions
30 constants
31 coupling constants
32 degree
33 detail
34 dynamics
35 example
36 exchange anisotropy
37 exchange interaction
38 freedom
39 independent integrals
40 integrability
41 integrability problem
42 integrable systems
43 integrals
44 interaction
45 investigation
46 involution
47 model
48 model constants
49 motion
50 nonexistence
51 nonlinear dynamics
52 numerical calculations
53 pair of spins
54 pairs
55 problem
56 problem of integrability
57 quadratic integral
58 second independent integral
59 second integral
60 spin
61 spin clusters
62 spin motion
63 spin systems
64 spin variables
65 system
66 terms
67 theorem
68 two-spin Hamiltonian
69 two-spin system
70 values
71 variables
72 violation
73 schema:name Integrable and nonintegrable classical spin clusters
74 schema:pagination 363-374
75 schema:productId N37f28da1c7794adeab574e647eab40e2
76 Nfc9c7a1a76d34f93a39203d77254f5d0
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017415994
78 https://doi.org/10.1007/bf01303725
79 schema:sdDatePublished 2022-12-01T06:19
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher N402ddd9a6832481bba45feff313d22fa
82 schema:url https://doi.org/10.1007/bf01303725
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N01fbc9ac29f54e3f946ef79bfceda9eb rdf:first sg:person.01221016753.35
87 rdf:rest rdf:nil
88 N2e70a8d67d3b4062823064c00aebf919 rdf:first sg:person.016561357271.09
89 rdf:rest N01fbc9ac29f54e3f946ef79bfceda9eb
90 N37f28da1c7794adeab574e647eab40e2 schema:name dimensions_id
91 schema:value pub.1017415994
92 rdf:type schema:PropertyValue
93 N402ddd9a6832481bba45feff313d22fa schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N66b6e1d293644168a82f5128948fe183 rdf:first sg:person.010411043343.13
96 rdf:rest Nfcd9c8af0d78403e9b682cb1c13e580a
97 Nbd596cf3eae64707a7a16788ebb2607c schema:volumeNumber 65
98 rdf:type schema:PublicationVolume
99 Ne14086e0341c4b6cacd5e525c0d32bd7 rdf:first sg:person.014371035671.39
100 rdf:rest N2e70a8d67d3b4062823064c00aebf919
101 Ned24ff48a01b479ea448dc3552d7c3d7 schema:issueNumber 3
102 rdf:type schema:PublicationIssue
103 Nfc9c7a1a76d34f93a39203d77254f5d0 schema:name doi
104 schema:value 10.1007/bf01303725
105 rdf:type schema:PropertyValue
106 Nfcd9c8af0d78403e9b682cb1c13e580a rdf:first sg:person.0711120037.13
107 rdf:rest Ne14086e0341c4b6cacd5e525c0d32bd7
108 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
109 schema:name Mathematical Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
112 schema:name Pure Mathematics
113 rdf:type schema:DefinedTerm
114 sg:journal.1285002 schema:issn 0722-3277
115 1431-584X
116 schema:name Zeitschrift für Physik B Condensed Matter
117 schema:publisher Springer Nature
118 rdf:type schema:Periodical
119 sg:person.010411043343.13 schema:affiliation grid-institutes:grid.6612.3
120 schema:familyName Magyari
121 schema:givenName E.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010411043343.13
123 rdf:type schema:Person
124 sg:person.01221016753.35 schema:affiliation grid-institutes:grid.20431.34
125 schema:familyName Müller
126 schema:givenName G.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221016753.35
128 rdf:type schema:Person
129 sg:person.014371035671.39 schema:affiliation grid-institutes:grid.6612.3
130 schema:familyName Weber
131 schema:givenName R.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014371035671.39
133 rdf:type schema:Person
134 sg:person.016561357271.09 schema:affiliation grid-institutes:grid.20431.34
135 schema:familyName Kaufman
136 schema:givenName C.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016561357271.09
138 rdf:type schema:Person
139 sg:person.0711120037.13 schema:affiliation grid-institutes:grid.6612.3
140 schema:familyName Thomas
141 schema:givenName H.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711120037.13
143 rdf:type schema:Person
144 sg:pub.10.1007/978-1-4757-1693-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035545882
145 https://doi.org/10.1007/978-1-4757-1693-1
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/978-1-4757-4257-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005432200
148 https://doi.org/10.1007/978-1-4757-4257-2
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/978-3-642-81509-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021666513
151 https://doi.org/10.1007/978-3-642-81509-6
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/bf01312650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030634392
154 https://doi.org/10.1007/bf01312650
155 rdf:type schema:CreativeWork
156 grid-institutes:grid.20431.34 schema:alternateName Department of Physics, University of Rhode Island, 02881-0817, Kingston, Rhode Island, USA
157 schema:name Department of Physics, University of Rhode Island, 02881-0817, Kingston, Rhode Island, USA
158 rdf:type schema:Organization
159 grid-institutes:grid.6612.3 schema:alternateName Institut für Physik der Universität Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland
160 schema:name Institut für Physik der Universität Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...