Integrable and nonintegrable classical spin clusters View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-09

AUTHORS

E. Magyari, H. Thomas, R. Weber, C. Kaufman, G. Müller

ABSTRACT

The nonlinear dynamics is investigated for a system ofN classical spins. This represents a Hamiltonian system withN degrees of freedom. According to the Liouville theorem, the complete integrability of such a system requires the existence ofN independent integrals of the motion which are mutually in involution. As a basis for the investigation of regular and chaotic spin motions, we have examined in detail the problem of integrability of a two-spin system. It represents the simplest autonomous spin system for which the integrability problem is nontrivial. We have shown that a pair of spins coupled by an anisotropic exchange interaction represents a completely integrable system for any values of the coupling constants. The second integral of the motion (in addition to the Hamiltonian), which ensures the complete integrability, turns out to be quadratic in the spin variables. If, in addition to the exchange anisotropy also singlesite anisotropy terms are included in the two-spin Hamiltonian, a second integral of the motion quadratic in the spin variables exists and thus guarantees integrability, only if the model constants satisfy a certain condition. Our numerical calculations strongly suggest that the violation of this condition implies not only the nonexistence of a quadratic integral, but the nonexistence of a second independent integral of motion in general. Finally, as an example of a completely integrableN-spin system we present the Kittel-Shore model of uniformly interacting spins, for which we have constructed theN independent integrals in involution as well as the action-angle variables explicitly. More... »

PAGES

363-374

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01303725

DOI

http://dx.doi.org/10.1007/bf01303725

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017415994


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Physik der Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.6612.3", 
          "name": [
            "Institut f\u00fcr Physik der Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magyari", 
        "givenName": "E.", 
        "id": "sg:person.010411043343.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010411043343.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Physik der Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.6612.3", 
          "name": [
            "Institut f\u00fcr Physik der Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomas", 
        "givenName": "H.", 
        "id": "sg:person.0711120037.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711120037.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Physik der Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.6612.3", 
          "name": [
            "Institut f\u00fcr Physik der Universit\u00e4t Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weber", 
        "givenName": "R.", 
        "id": "sg:person.014371035671.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014371035671.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Rhode Island, 02881-0817, Kingston, Rhode Island, USA", 
          "id": "http://www.grid.ac/institutes/grid.20431.34", 
          "name": [
            "Department of Physics, University of Rhode Island, 02881-0817, Kingston, Rhode Island, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaufman", 
        "givenName": "C.", 
        "id": "sg:person.016561357271.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016561357271.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Rhode Island, 02881-0817, Kingston, Rhode Island, USA", 
          "id": "http://www.grid.ac/institutes/grid.20431.34", 
          "name": [
            "Department of Physics, University of Rhode Island, 02881-0817, Kingston, Rhode Island, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00fcller", 
        "givenName": "G.", 
        "id": "sg:person.01221016753.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221016753.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01312650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030634392", 
          "https://doi.org/10.1007/bf01312650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-1693-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035545882", 
          "https://doi.org/10.1007/978-1-4757-1693-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-4257-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005432200", 
          "https://doi.org/10.1007/978-1-4757-4257-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-81509-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021666513", 
          "https://doi.org/10.1007/978-3-642-81509-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1987-09", 
    "datePublishedReg": "1987-09-01", 
    "description": "The nonlinear dynamics is investigated for a system ofN classical spins. This represents a Hamiltonian system withN degrees of freedom. According to the Liouville theorem, the complete integrability of such a system requires the existence ofN independent integrals of the motion which are mutually in involution. As a basis for the investigation of regular and chaotic spin motions, we have examined in detail the problem of integrability of a two-spin system. It represents the simplest autonomous spin system for which the integrability problem is nontrivial. We have shown that a pair of spins coupled by an anisotropic exchange interaction represents a completely integrable system for any values of the coupling constants. The second integral of the motion (in addition to the Hamiltonian), which ensures the complete integrability, turns out to be quadratic in the spin variables. If, in addition to the exchange anisotropy also singlesite anisotropy terms are included in the two-spin Hamiltonian, a second integral of the motion quadratic in the spin variables exists and thus guarantees integrability, only if the model constants satisfy a certain condition. Our numerical calculations strongly suggest that the violation of this condition implies not only the nonexistence of a quadratic integral, but the nonexistence of a second independent integral of motion in general. Finally, as an example of a completely integrableN-spin system we present the Kittel-Shore model of uniformly interacting spins, for which we have constructed theN independent integrals in involution as well as the action-angle variables explicitly.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01303725", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1285002", 
        "issn": [
          "0722-3277", 
          "1431-584X"
        ], 
        "name": "Zeitschrift f\u00fcr Physik B Condensed Matter", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "65"
      }
    ], 
    "keywords": [
      "complete integrability", 
      "spin variables", 
      "independent integrals", 
      "second integral", 
      "second independent integral", 
      "problem of integrability", 
      "action-angle variables", 
      "two-spin Hamiltonian", 
      "pair of spins", 
      "two-spin system", 
      "anisotropic exchange interaction", 
      "integrable systems", 
      "classical spins", 
      "quadratic integral", 
      "spin clusters", 
      "Liouville theorem", 
      "integrability problem", 
      "spin motion", 
      "anisotropy term", 
      "spin systems", 
      "nonlinear dynamics", 
      "exchange anisotropy", 
      "integrability", 
      "exchange interaction", 
      "integrals", 
      "numerical calculations", 
      "spin", 
      "motion", 
      "nonexistence", 
      "model constants", 
      "certain conditions", 
      "coupling constants", 
      "theorem", 
      "Hamiltonian", 
      "problem", 
      "variables", 
      "anisotropy", 
      "system", 
      "involution", 
      "dynamics", 
      "constants", 
      "calculations", 
      "freedom", 
      "model", 
      "terms", 
      "conditions", 
      "violation", 
      "clusters", 
      "detail", 
      "pairs", 
      "values", 
      "basis", 
      "degree", 
      "interaction", 
      "investigation", 
      "addition", 
      "example"
    ], 
    "name": "Integrable and nonintegrable classical spin clusters", 
    "pagination": "363-374", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017415994"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01303725"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01303725", 
      "https://app.dimensions.ai/details/publication/pub.1017415994"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_198.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01303725"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01303725'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01303725'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01303725'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01303725'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      21 PREDICATES      86 URIs      74 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01303725 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N56d37dc707b4497f969375eda56d33f5
4 schema:citation sg:pub.10.1007/978-1-4757-1693-1
5 sg:pub.10.1007/978-1-4757-4257-2
6 sg:pub.10.1007/978-3-642-81509-6
7 sg:pub.10.1007/bf01312650
8 schema:datePublished 1987-09
9 schema:datePublishedReg 1987-09-01
10 schema:description The nonlinear dynamics is investigated for a system ofN classical spins. This represents a Hamiltonian system withN degrees of freedom. According to the Liouville theorem, the complete integrability of such a system requires the existence ofN independent integrals of the motion which are mutually in involution. As a basis for the investigation of regular and chaotic spin motions, we have examined in detail the problem of integrability of a two-spin system. It represents the simplest autonomous spin system for which the integrability problem is nontrivial. We have shown that a pair of spins coupled by an anisotropic exchange interaction represents a completely integrable system for any values of the coupling constants. The second integral of the motion (in addition to the Hamiltonian), which ensures the complete integrability, turns out to be quadratic in the spin variables. If, in addition to the exchange anisotropy also singlesite anisotropy terms are included in the two-spin Hamiltonian, a second integral of the motion quadratic in the spin variables exists and thus guarantees integrability, only if the model constants satisfy a certain condition. Our numerical calculations strongly suggest that the violation of this condition implies not only the nonexistence of a quadratic integral, but the nonexistence of a second independent integral of motion in general. Finally, as an example of a completely integrableN-spin system we present the Kittel-Shore model of uniformly interacting spins, for which we have constructed theN independent integrals in involution as well as the action-angle variables explicitly.
11 schema:genre article
12 schema:isAccessibleForFree false
13 schema:isPartOf Nd9984db10e8249839fb9011bba547ae2
14 Nec09720fcfb3472ba53fdfc49528027b
15 sg:journal.1285002
16 schema:keywords Hamiltonian
17 Liouville theorem
18 action-angle variables
19 addition
20 anisotropic exchange interaction
21 anisotropy
22 anisotropy term
23 basis
24 calculations
25 certain conditions
26 classical spins
27 clusters
28 complete integrability
29 conditions
30 constants
31 coupling constants
32 degree
33 detail
34 dynamics
35 example
36 exchange anisotropy
37 exchange interaction
38 freedom
39 independent integrals
40 integrability
41 integrability problem
42 integrable systems
43 integrals
44 interaction
45 investigation
46 involution
47 model
48 model constants
49 motion
50 nonexistence
51 nonlinear dynamics
52 numerical calculations
53 pair of spins
54 pairs
55 problem
56 problem of integrability
57 quadratic integral
58 second independent integral
59 second integral
60 spin
61 spin clusters
62 spin motion
63 spin systems
64 spin variables
65 system
66 terms
67 theorem
68 two-spin Hamiltonian
69 two-spin system
70 values
71 variables
72 violation
73 schema:name Integrable and nonintegrable classical spin clusters
74 schema:pagination 363-374
75 schema:productId N82915adcc6d0432fb612961aae7a6282
76 Nbc297f828a5149d0945b42609054e63d
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017415994
78 https://doi.org/10.1007/bf01303725
79 schema:sdDatePublished 2022-09-02T15:46
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher Na1229b4600a04c69b2914ecb0beec7e6
82 schema:url https://doi.org/10.1007/bf01303725
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N00f84b0af86449fd9f1b154ce6901d0e rdf:first sg:person.014371035671.39
87 rdf:rest N7d093e63a5cf41cbae849bd1a9b03c1d
88 N56d37dc707b4497f969375eda56d33f5 rdf:first sg:person.010411043343.13
89 rdf:rest Nd4c34a748dfd4581b1badb03429d5237
90 N7d093e63a5cf41cbae849bd1a9b03c1d rdf:first sg:person.016561357271.09
91 rdf:rest Ne22abaa8159b4c7b811a733e6ed733b8
92 N82915adcc6d0432fb612961aae7a6282 schema:name doi
93 schema:value 10.1007/bf01303725
94 rdf:type schema:PropertyValue
95 Na1229b4600a04c69b2914ecb0beec7e6 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Nbc297f828a5149d0945b42609054e63d schema:name dimensions_id
98 schema:value pub.1017415994
99 rdf:type schema:PropertyValue
100 Nd4c34a748dfd4581b1badb03429d5237 rdf:first sg:person.0711120037.13
101 rdf:rest N00f84b0af86449fd9f1b154ce6901d0e
102 Nd9984db10e8249839fb9011bba547ae2 schema:issueNumber 3
103 rdf:type schema:PublicationIssue
104 Ne22abaa8159b4c7b811a733e6ed733b8 rdf:first sg:person.01221016753.35
105 rdf:rest rdf:nil
106 Nec09720fcfb3472ba53fdfc49528027b schema:volumeNumber 65
107 rdf:type schema:PublicationVolume
108 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
109 schema:name Mathematical Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
112 schema:name Pure Mathematics
113 rdf:type schema:DefinedTerm
114 sg:journal.1285002 schema:issn 0722-3277
115 1431-584X
116 schema:name Zeitschrift für Physik B Condensed Matter
117 schema:publisher Springer Nature
118 rdf:type schema:Periodical
119 sg:person.010411043343.13 schema:affiliation grid-institutes:grid.6612.3
120 schema:familyName Magyari
121 schema:givenName E.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010411043343.13
123 rdf:type schema:Person
124 sg:person.01221016753.35 schema:affiliation grid-institutes:grid.20431.34
125 schema:familyName Müller
126 schema:givenName G.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221016753.35
128 rdf:type schema:Person
129 sg:person.014371035671.39 schema:affiliation grid-institutes:grid.6612.3
130 schema:familyName Weber
131 schema:givenName R.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014371035671.39
133 rdf:type schema:Person
134 sg:person.016561357271.09 schema:affiliation grid-institutes:grid.20431.34
135 schema:familyName Kaufman
136 schema:givenName C.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016561357271.09
138 rdf:type schema:Person
139 sg:person.0711120037.13 schema:affiliation grid-institutes:grid.6612.3
140 schema:familyName Thomas
141 schema:givenName H.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711120037.13
143 rdf:type schema:Person
144 sg:pub.10.1007/978-1-4757-1693-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035545882
145 https://doi.org/10.1007/978-1-4757-1693-1
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/978-1-4757-4257-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005432200
148 https://doi.org/10.1007/978-1-4757-4257-2
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/978-3-642-81509-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021666513
151 https://doi.org/10.1007/978-3-642-81509-6
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/bf01312650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030634392
154 https://doi.org/10.1007/bf01312650
155 rdf:type schema:CreativeWork
156 grid-institutes:grid.20431.34 schema:alternateName Department of Physics, University of Rhode Island, 02881-0817, Kingston, Rhode Island, USA
157 schema:name Department of Physics, University of Rhode Island, 02881-0817, Kingston, Rhode Island, USA
158 rdf:type schema:Organization
159 grid-institutes:grid.6612.3 schema:alternateName Institut für Physik der Universität Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland
160 schema:name Institut für Physik der Universität Basel, Klingelbergstrasse 82, CH-4056, Basel, Switzerland
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...