On the size of balls covered by analytic transformations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1977-03

AUTHORS

Lawrence A. Harris

ABSTRACT

Two quantitative forms of the inverse function theorem giving estimates on the size of balls covered biholomorphically are proved for holomorphic mappings of a ball in a Banach space into the space. Also, a Bloch theorem forK-quasiconformal mappings on the open unit ball of a Banach space is given and some mapping properties ofK-quasiconformal mappings are deduced. More... »

PAGES

9-23

References to SciGraph publications

Journal

TITLE

Monatshefte für Mathematik

ISSUE

1

VOLUME

83

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01303008

DOI

http://dx.doi.org/10.1007/bf01303008

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029658198


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Kentucky", 
          "id": "https://www.grid.ac/institutes/grid.266539.d", 
          "name": [
            "Department of Mathematics College of Arts and Sciences, University of Kentucky, 40506, Lexington, KY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Harris", 
        "givenName": "Lawrence A.", 
        "id": "sg:person.01035375464.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035375464.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bfb0061216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000295529", 
          "https://doi.org/10.1007/bfb0061216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0061216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000295529", 
          "https://doi.org/10.1007/bfb0061216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02392083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013402379", 
          "https://doi.org/10.1007/bf02392083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9904-1946-08640-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015083531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01187791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016782538", 
          "https://doi.org/10.1007/bf01187791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-1973-0318518-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043564739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01109869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044290560", 
          "https://doi.org/10.1007/bf01109869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01109869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044290560", 
          "https://doi.org/10.1007/bf01109869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1961-0133024-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049513135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1973-0325994-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049693382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.1973.46.575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069065678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2319059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069885398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cjm-1975-053-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072266019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.24033/asens.812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084409338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781107359895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098777080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14492/hokmj/1531209884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105987953"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1977-03", 
    "datePublishedReg": "1977-03-01", 
    "description": "Two quantitative forms of the inverse function theorem giving estimates on the size of balls covered biholomorphically are proved for holomorphic mappings of a ball in a Banach space into the space. Also, a Bloch theorem forK-quasiconformal mappings on the open unit ball of a Banach space is given and some mapping properties ofK-quasiconformal mappings are deduced.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01303008", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049395", 
        "issn": [
          "0026-9255", 
          "1436-5081"
        ], 
        "name": "Monatshefte f\u00fcr Mathematik", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "83"
      }
    ], 
    "name": "On the size of balls covered by analytic transformations", 
    "pagination": "9-23", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8d4908b5fc1ce6238bd58e486f36caef2ae1560fcf841f8dae06120c996e177a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01303008"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029658198"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01303008", 
      "https://app.dimensions.ai/details/publication/pub.1029658198"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46760_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01303008"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01303008'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01303008'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01303008'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01303008'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01303008 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N559ee1dfa4c7483bac4580eb958f4102
4 schema:citation sg:pub.10.1007/bf01109869
5 sg:pub.10.1007/bf01187791
6 sg:pub.10.1007/bf02392083
7 sg:pub.10.1007/bfb0061216
8 https://doi.org/10.1017/cbo9781107359895
9 https://doi.org/10.1090/s0002-9904-1946-08640-1
10 https://doi.org/10.1090/s0002-9939-1973-0318518-2
11 https://doi.org/10.1090/s0002-9947-1961-0133024-2
12 https://doi.org/10.1090/s0002-9947-1973-0325994-2
13 https://doi.org/10.14492/hokmj/1531209884
14 https://doi.org/10.2140/pjm.1973.46.575
15 https://doi.org/10.2307/2319059
16 https://doi.org/10.24033/asens.812
17 https://doi.org/10.4153/cjm-1975-053-0
18 schema:datePublished 1977-03
19 schema:datePublishedReg 1977-03-01
20 schema:description Two quantitative forms of the inverse function theorem giving estimates on the size of balls covered biholomorphically are proved for holomorphic mappings of a ball in a Banach space into the space. Also, a Bloch theorem forK-quasiconformal mappings on the open unit ball of a Banach space is given and some mapping properties ofK-quasiconformal mappings are deduced.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N1e6ac877adb1400391fcacf1aa2327b4
25 Naf559da56a044b8996996a920dcb7e35
26 sg:journal.1049395
27 schema:name On the size of balls covered by analytic transformations
28 schema:pagination 9-23
29 schema:productId N31434c467bf441f39fd05bd60f3e773c
30 N814b969b07ce4dc38ed1d82f011b93f8
31 N899f389c3a3c41c68a0adb7c8d13930d
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029658198
33 https://doi.org/10.1007/bf01303008
34 schema:sdDatePublished 2019-04-11T13:32
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N843b160925834de190d8af7032a5ed6a
37 schema:url http://link.springer.com/10.1007/BF01303008
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N1e6ac877adb1400391fcacf1aa2327b4 schema:volumeNumber 83
42 rdf:type schema:PublicationVolume
43 N31434c467bf441f39fd05bd60f3e773c schema:name readcube_id
44 schema:value 8d4908b5fc1ce6238bd58e486f36caef2ae1560fcf841f8dae06120c996e177a
45 rdf:type schema:PropertyValue
46 N559ee1dfa4c7483bac4580eb958f4102 rdf:first sg:person.01035375464.32
47 rdf:rest rdf:nil
48 N814b969b07ce4dc38ed1d82f011b93f8 schema:name doi
49 schema:value 10.1007/bf01303008
50 rdf:type schema:PropertyValue
51 N843b160925834de190d8af7032a5ed6a schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N899f389c3a3c41c68a0adb7c8d13930d schema:name dimensions_id
54 schema:value pub.1029658198
55 rdf:type schema:PropertyValue
56 Naf559da56a044b8996996a920dcb7e35 schema:issueNumber 1
57 rdf:type schema:PublicationIssue
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
62 schema:name Pure Mathematics
63 rdf:type schema:DefinedTerm
64 sg:journal.1049395 schema:issn 0026-9255
65 1436-5081
66 schema:name Monatshefte für Mathematik
67 rdf:type schema:Periodical
68 sg:person.01035375464.32 schema:affiliation https://www.grid.ac/institutes/grid.266539.d
69 schema:familyName Harris
70 schema:givenName Lawrence A.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035375464.32
72 rdf:type schema:Person
73 sg:pub.10.1007/bf01109869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044290560
74 https://doi.org/10.1007/bf01109869
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/bf01187791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016782538
77 https://doi.org/10.1007/bf01187791
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/bf02392083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013402379
80 https://doi.org/10.1007/bf02392083
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/bfb0061216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000295529
83 https://doi.org/10.1007/bfb0061216
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1017/cbo9781107359895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098777080
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1090/s0002-9904-1946-08640-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015083531
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1090/s0002-9939-1973-0318518-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043564739
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1090/s0002-9947-1961-0133024-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049513135
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1090/s0002-9947-1973-0325994-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049693382
94 rdf:type schema:CreativeWork
95 https://doi.org/10.14492/hokmj/1531209884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105987953
96 rdf:type schema:CreativeWork
97 https://doi.org/10.2140/pjm.1973.46.575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069065678
98 rdf:type schema:CreativeWork
99 https://doi.org/10.2307/2319059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069885398
100 rdf:type schema:CreativeWork
101 https://doi.org/10.24033/asens.812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084409338
102 rdf:type schema:CreativeWork
103 https://doi.org/10.4153/cjm-1975-053-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072266019
104 rdf:type schema:CreativeWork
105 https://www.grid.ac/institutes/grid.266539.d schema:alternateName University of Kentucky
106 schema:name Department of Mathematics College of Arts and Sciences, University of Kentucky, 40506, Lexington, KY, USA
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...