New proof of Naimark's theorem on the existence of nonpositive invariant subspaces for commuting families of unitary operators in Pontryagin ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-06

AUTHORS

Zoltán Sasvári

ABSTRACT

In the present note we give a new and short proof of Naimark's theorem asserting that for every commuting family ℱ of unitary operators in a πk-space Πk there exists ak-dimensional, nonpositive subspace invariant under ℱ.

PAGES

153-156

References to SciGraph publications

Journal

TITLE

Monatshefte für Mathematik

ISSUE

2

VOLUME

109

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01302935

DOI

http://dx.doi.org/10.1007/bf01302935

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023851554


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "TU Dresden", 
          "id": "https://www.grid.ac/institutes/grid.4488.0", 
          "name": [
            "Technische Universit\u00e4t Sektion Mathematik, Mommsenstrasse 13, DDR-8027, Dresden, German Democratic Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sasv\u00e1ri", 
        "givenName": "Zolt\u00e1n", 
        "id": "sg:person.015631072137.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015631072137.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-1236(88)90014-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006215439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65567-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011407145", 
          "https://doi.org/10.1007/978-3-642-65567-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65567-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011407145", 
          "https://doi.org/10.1007/978-3-642-65567-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crll.1916.146.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016142094"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990-06", 
    "datePublishedReg": "1990-06-01", 
    "description": "In the present note we give a new and short proof of Naimark's theorem asserting that for every commuting family \u2131 of unitary operators in a \u03c0k-space \u03a0k there exists ak-dimensional, nonpositive subspace invariant under \u2131.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01302935", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049395", 
        "issn": [
          "0026-9255", 
          "1436-5081"
        ], 
        "name": "Monatshefte f\u00fcr Mathematik", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "109"
      }
    ], 
    "name": "New proof of Naimark's theorem on the existence of nonpositive invariant subspaces for commuting families of unitary operators in Pontryagin spaces", 
    "pagination": "153-156", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "71a1d072713bdde0395e190732295a37dd1def96d4043c2dac1333db8a514fae"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01302935"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023851554"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01302935", 
      "https://app.dimensions.ai/details/publication/pub.1023851554"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46751_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01302935"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01302935'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01302935'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01302935'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01302935'


 

This table displays all metadata directly associated to this object as RDF triples.

63 TRIPLES      20 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01302935 schema:author Nda4bd4eefe9040dda56a23b7a54e6b3e
2 schema:citation sg:pub.10.1007/978-3-642-65567-8
3 https://doi.org/10.1016/0022-1236(88)90014-6
4 https://doi.org/10.1515/crll.1916.146.53
5 schema:datePublished 1990-06
6 schema:datePublishedReg 1990-06-01
7 schema:description In the present note we give a new and short proof of Naimark's theorem asserting that for every commuting family ℱ of unitary operators in a πk-space Πk there exists ak-dimensional, nonpositive subspace invariant under ℱ.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Ne459d818eea44417b28c5e76fddfc513
12 Nea10d3ce3377422a9aabbc7cb0580ca9
13 sg:journal.1049395
14 schema:name New proof of Naimark's theorem on the existence of nonpositive invariant subspaces for commuting families of unitary operators in Pontryagin spaces
15 schema:pagination 153-156
16 schema:productId N32367696567c468bad977fbc0bc6e10e
17 N56431851c6194a86aee4fd89129f7471
18 N645eb1a8714f439d85a88eef401c4f73
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023851554
20 https://doi.org/10.1007/bf01302935
21 schema:sdDatePublished 2019-04-11T13:30
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher Nb59fda8ca10c4281b60c6bcf53ea1130
24 schema:url http://link.springer.com/10.1007/BF01302935
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N32367696567c468bad977fbc0bc6e10e schema:name readcube_id
29 schema:value 71a1d072713bdde0395e190732295a37dd1def96d4043c2dac1333db8a514fae
30 rdf:type schema:PropertyValue
31 N56431851c6194a86aee4fd89129f7471 schema:name doi
32 schema:value 10.1007/bf01302935
33 rdf:type schema:PropertyValue
34 N645eb1a8714f439d85a88eef401c4f73 schema:name dimensions_id
35 schema:value pub.1023851554
36 rdf:type schema:PropertyValue
37 Nb59fda8ca10c4281b60c6bcf53ea1130 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 Nda4bd4eefe9040dda56a23b7a54e6b3e rdf:first sg:person.015631072137.62
40 rdf:rest rdf:nil
41 Ne459d818eea44417b28c5e76fddfc513 schema:volumeNumber 109
42 rdf:type schema:PublicationVolume
43 Nea10d3ce3377422a9aabbc7cb0580ca9 schema:issueNumber 2
44 rdf:type schema:PublicationIssue
45 sg:journal.1049395 schema:issn 0026-9255
46 1436-5081
47 schema:name Monatshefte für Mathematik
48 rdf:type schema:Periodical
49 sg:person.015631072137.62 schema:affiliation https://www.grid.ac/institutes/grid.4488.0
50 schema:familyName Sasvári
51 schema:givenName Zoltán
52 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015631072137.62
53 rdf:type schema:Person
54 sg:pub.10.1007/978-3-642-65567-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011407145
55 https://doi.org/10.1007/978-3-642-65567-8
56 rdf:type schema:CreativeWork
57 https://doi.org/10.1016/0022-1236(88)90014-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006215439
58 rdf:type schema:CreativeWork
59 https://doi.org/10.1515/crll.1916.146.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016142094
60 rdf:type schema:CreativeWork
61 https://www.grid.ac/institutes/grid.4488.0 schema:alternateName TU Dresden
62 schema:name Technische Universität Sektion Mathematik, Mommsenstrasse 13, DDR-8027, Dresden, German Democratic Republic
63 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...