New proof of Naimark's theorem on the existence of nonpositive invariant subspaces for commuting families of unitary operators in Pontryagin ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-06

AUTHORS

Zoltán Sasvári

ABSTRACT

In the present note we give a new and short proof of Naimark's theorem asserting that for every commuting family ℱ of unitary operators in a πk-space Πk there exists ak-dimensional, nonpositive subspace invariant under ℱ.

PAGES

153-156

References to SciGraph publications

Journal

TITLE

Monatshefte für Mathematik

ISSUE

2

VOLUME

109

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01302935

DOI

http://dx.doi.org/10.1007/bf01302935

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023851554


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "TU Dresden", 
          "id": "https://www.grid.ac/institutes/grid.4488.0", 
          "name": [
            "Technische Universit\u00e4t Sektion Mathematik, Mommsenstrasse 13, DDR-8027, Dresden, German Democratic Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sasv\u00e1ri", 
        "givenName": "Zolt\u00e1n", 
        "id": "sg:person.015631072137.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015631072137.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-1236(88)90014-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006215439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65567-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011407145", 
          "https://doi.org/10.1007/978-3-642-65567-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65567-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011407145", 
          "https://doi.org/10.1007/978-3-642-65567-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crll.1916.146.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016142094"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990-06", 
    "datePublishedReg": "1990-06-01", 
    "description": "In the present note we give a new and short proof of Naimark's theorem asserting that for every commuting family \u2131 of unitary operators in a \u03c0k-space \u03a0k there exists ak-dimensional, nonpositive subspace invariant under \u2131.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01302935", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049395", 
        "issn": [
          "0026-9255", 
          "1436-5081"
        ], 
        "name": "Monatshefte f\u00fcr Mathematik", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "109"
      }
    ], 
    "name": "New proof of Naimark's theorem on the existence of nonpositive invariant subspaces for commuting families of unitary operators in Pontryagin spaces", 
    "pagination": "153-156", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "71a1d072713bdde0395e190732295a37dd1def96d4043c2dac1333db8a514fae"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01302935"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023851554"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01302935", 
      "https://app.dimensions.ai/details/publication/pub.1023851554"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46751_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01302935"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01302935'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01302935'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01302935'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01302935'


 

This table displays all metadata directly associated to this object as RDF triples.

63 TRIPLES      20 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01302935 schema:author Nb4b89ac3525e4a7f8c1a4796a37eccc5
2 schema:citation sg:pub.10.1007/978-3-642-65567-8
3 https://doi.org/10.1016/0022-1236(88)90014-6
4 https://doi.org/10.1515/crll.1916.146.53
5 schema:datePublished 1990-06
6 schema:datePublishedReg 1990-06-01
7 schema:description In the present note we give a new and short proof of Naimark's theorem asserting that for every commuting family ℱ of unitary operators in a πk-space Πk there exists ak-dimensional, nonpositive subspace invariant under ℱ.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N324a0231c71146879915e5ef8ea846df
12 N823f6be6b23b465a84cfb355843cb65f
13 sg:journal.1049395
14 schema:name New proof of Naimark's theorem on the existence of nonpositive invariant subspaces for commuting families of unitary operators in Pontryagin spaces
15 schema:pagination 153-156
16 schema:productId N57b85dc142c8449caaa9275616525848
17 Nab5b0c93b79942cfb1bc3a1e01c1bc24
18 Nb2c692c036cf4475ab18f4ae994a2615
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023851554
20 https://doi.org/10.1007/bf01302935
21 schema:sdDatePublished 2019-04-11T13:30
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N295c2f3e909e459591904c1610388ae2
24 schema:url http://link.springer.com/10.1007/BF01302935
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N295c2f3e909e459591904c1610388ae2 schema:name Springer Nature - SN SciGraph project
29 rdf:type schema:Organization
30 N324a0231c71146879915e5ef8ea846df schema:volumeNumber 109
31 rdf:type schema:PublicationVolume
32 N57b85dc142c8449caaa9275616525848 schema:name doi
33 schema:value 10.1007/bf01302935
34 rdf:type schema:PropertyValue
35 N823f6be6b23b465a84cfb355843cb65f schema:issueNumber 2
36 rdf:type schema:PublicationIssue
37 Nab5b0c93b79942cfb1bc3a1e01c1bc24 schema:name readcube_id
38 schema:value 71a1d072713bdde0395e190732295a37dd1def96d4043c2dac1333db8a514fae
39 rdf:type schema:PropertyValue
40 Nb2c692c036cf4475ab18f4ae994a2615 schema:name dimensions_id
41 schema:value pub.1023851554
42 rdf:type schema:PropertyValue
43 Nb4b89ac3525e4a7f8c1a4796a37eccc5 rdf:first sg:person.015631072137.62
44 rdf:rest rdf:nil
45 sg:journal.1049395 schema:issn 0026-9255
46 1436-5081
47 schema:name Monatshefte für Mathematik
48 rdf:type schema:Periodical
49 sg:person.015631072137.62 schema:affiliation https://www.grid.ac/institutes/grid.4488.0
50 schema:familyName Sasvári
51 schema:givenName Zoltán
52 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015631072137.62
53 rdf:type schema:Person
54 sg:pub.10.1007/978-3-642-65567-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011407145
55 https://doi.org/10.1007/978-3-642-65567-8
56 rdf:type schema:CreativeWork
57 https://doi.org/10.1016/0022-1236(88)90014-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006215439
58 rdf:type schema:CreativeWork
59 https://doi.org/10.1515/crll.1916.146.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016142094
60 rdf:type schema:CreativeWork
61 https://www.grid.ac/institutes/grid.4488.0 schema:alternateName TU Dresden
62 schema:name Technische Universität Sektion Mathematik, Mommsenstrasse 13, DDR-8027, Dresden, German Democratic Republic
63 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...