Dielectric function in the relaxation-time approximation generalized to electronic multiple-band systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1980-06

AUTHORS

R. Kragler, H. Thomas

ABSTRACT

The standard relaxation-time approximation is modified in such a way that local particle-number conservation is guaranteed. The correct relaxational behavior towards local equilibrium is discussed for a single-band model and subsequently extended to the multiple-band case. For the latter one the dielectric response is calculated from a Boltzmann equation which includes both intraband and interband effects. In the hydrodynamic limit the dielectric response exhibits a diffusion pole as well as a relaxation pole determined by the interband scattering rate only. Furthermore, it is shown that the structure of the multiple-band Boltzmann equation derived on a phenomenological basis is supported by microscopic transport theory. More... »

PAGES

99-107

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01301514

DOI

http://dx.doi.org/10.1007/bf01301514

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023488669


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Fakult\u00e4t f\u00fcr Physik, Universit\u00e4t Konstanz, Postfach 5560, D-7750, Konstanz 1, Federal Republic of Germany", 
          "id": "http://www.grid.ac/institutes/grid.9811.1", 
          "name": [
            "Fakult\u00e4t f\u00fcr Physik, Universit\u00e4t Konstanz, Postfach 5560, D-7750, Konstanz 1, Federal Republic of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kragler", 
        "givenName": "R.", 
        "id": "sg:person.07737170144.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07737170144.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Physik, Universit\u00e4t Basel, Klingelbergstra\u00dfe 82, CH-4056, Basel, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.6612.3", 
          "name": [
            "Institut f\u00fcr Physik, Universit\u00e4t Basel, Klingelbergstra\u00dfe 82, CH-4056, Basel, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thomas", 
        "givenName": "H.", 
        "id": "sg:person.0711120037.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711120037.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02422673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050592230", 
          "https://doi.org/10.1007/bf02422673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02422736", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001459625", 
          "https://doi.org/10.1007/bf02422736"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1980-06", 
    "datePublishedReg": "1980-06-01", 
    "description": "The standard relaxation-time approximation is modified in such a way that local particle-number conservation is guaranteed. The correct relaxational behavior towards local equilibrium is discussed for a single-band model and subsequently extended to the multiple-band case. For the latter one the dielectric response is calculated from a Boltzmann equation which includes both intraband and interband effects. In the hydrodynamic limit the dielectric response exhibits a diffusion pole as well as a relaxation pole determined by the interband scattering rate only. Furthermore, it is shown that the structure of the multiple-band Boltzmann equation derived on a phenomenological basis is supported by microscopic transport theory.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01301514", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1285002", 
        "issn": [
          "0722-3277", 
          "1431-584X"
        ], 
        "name": "Zeitschrift f\u00fcr Physik B Condensed Matter", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "39"
      }
    ], 
    "keywords": [
      "relaxation time approximation", 
      "microscopic transport theory", 
      "multiple-band systems", 
      "interband scattering rate", 
      "dielectric response", 
      "Boltzmann equation", 
      "single-band model", 
      "particle number conservation", 
      "interband effects", 
      "dielectric function", 
      "scattering rate", 
      "diffusion pole", 
      "transport theory", 
      "phenomenological basis", 
      "relaxational behavior", 
      "hydrodynamic limit", 
      "local equilibrium", 
      "intraband", 
      "approximation", 
      "equations", 
      "limit", 
      "theory", 
      "poles", 
      "structure", 
      "equilibrium", 
      "system", 
      "function", 
      "behavior", 
      "effect", 
      "model", 
      "way", 
      "basis", 
      "cases", 
      "rate", 
      "response", 
      "conservation"
    ], 
    "name": "Dielectric function in the relaxation-time approximation generalized to electronic multiple-band systems", 
    "pagination": "99-107", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023488669"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01301514"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01301514", 
      "https://app.dimensions.ai/details/publication/pub.1023488669"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_167.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01301514"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01301514'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01301514'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01301514'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01301514'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      21 PREDICATES      63 URIs      53 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01301514 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ndc45b219ba5c4c709ca49ca70e734c6c
4 schema:citation sg:pub.10.1007/bf02422673
5 sg:pub.10.1007/bf02422736
6 schema:datePublished 1980-06
7 schema:datePublishedReg 1980-06-01
8 schema:description The standard relaxation-time approximation is modified in such a way that local particle-number conservation is guaranteed. The correct relaxational behavior towards local equilibrium is discussed for a single-band model and subsequently extended to the multiple-band case. For the latter one the dielectric response is calculated from a Boltzmann equation which includes both intraband and interband effects. In the hydrodynamic limit the dielectric response exhibits a diffusion pole as well as a relaxation pole determined by the interband scattering rate only. Furthermore, it is shown that the structure of the multiple-band Boltzmann equation derived on a phenomenological basis is supported by microscopic transport theory.
9 schema:genre article
10 schema:isAccessibleForFree false
11 schema:isPartOf N015fe2a1890d47fbbd4f06a5e626fb87
12 N88e94e2c550a400cbcd6af85d148d0bf
13 sg:journal.1285002
14 schema:keywords Boltzmann equation
15 approximation
16 basis
17 behavior
18 cases
19 conservation
20 dielectric function
21 dielectric response
22 diffusion pole
23 effect
24 equations
25 equilibrium
26 function
27 hydrodynamic limit
28 interband effects
29 interband scattering rate
30 intraband
31 limit
32 local equilibrium
33 microscopic transport theory
34 model
35 multiple-band systems
36 particle number conservation
37 phenomenological basis
38 poles
39 rate
40 relaxation time approximation
41 relaxational behavior
42 response
43 scattering rate
44 single-band model
45 structure
46 system
47 theory
48 transport theory
49 way
50 schema:name Dielectric function in the relaxation-time approximation generalized to electronic multiple-band systems
51 schema:pagination 99-107
52 schema:productId N1dd630d763b5401090ef561bc31888b6
53 Ne0491d2b69d1414d9e694c6c9a248f9b
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023488669
55 https://doi.org/10.1007/bf01301514
56 schema:sdDatePublished 2022-10-01T06:27
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Nba3cd1c06dfb41a096a4cc94cad5f420
59 schema:url https://doi.org/10.1007/bf01301514
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N015fe2a1890d47fbbd4f06a5e626fb87 schema:issueNumber 2
64 rdf:type schema:PublicationIssue
65 N1dd630d763b5401090ef561bc31888b6 schema:name doi
66 schema:value 10.1007/bf01301514
67 rdf:type schema:PropertyValue
68 N3230928e15074d09ac9333a2f42b97f7 rdf:first sg:person.0711120037.13
69 rdf:rest rdf:nil
70 N88e94e2c550a400cbcd6af85d148d0bf schema:volumeNumber 39
71 rdf:type schema:PublicationVolume
72 Nba3cd1c06dfb41a096a4cc94cad5f420 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Ndc45b219ba5c4c709ca49ca70e734c6c rdf:first sg:person.07737170144.06
75 rdf:rest N3230928e15074d09ac9333a2f42b97f7
76 Ne0491d2b69d1414d9e694c6c9a248f9b schema:name dimensions_id
77 schema:value pub.1023488669
78 rdf:type schema:PropertyValue
79 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
80 schema:name Mathematical Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
83 schema:name Pure Mathematics
84 rdf:type schema:DefinedTerm
85 sg:journal.1285002 schema:issn 0722-3277
86 1431-584X
87 schema:name Zeitschrift für Physik B Condensed Matter
88 schema:publisher Springer Nature
89 rdf:type schema:Periodical
90 sg:person.0711120037.13 schema:affiliation grid-institutes:grid.6612.3
91 schema:familyName Thomas
92 schema:givenName H.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0711120037.13
94 rdf:type schema:Person
95 sg:person.07737170144.06 schema:affiliation grid-institutes:grid.9811.1
96 schema:familyName Kragler
97 schema:givenName R.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07737170144.06
99 rdf:type schema:Person
100 sg:pub.10.1007/bf02422673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050592230
101 https://doi.org/10.1007/bf02422673
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf02422736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001459625
104 https://doi.org/10.1007/bf02422736
105 rdf:type schema:CreativeWork
106 grid-institutes:grid.6612.3 schema:alternateName Institut für Physik, Universität Basel, Klingelbergstraße 82, CH-4056, Basel, Switzerland
107 schema:name Institut für Physik, Universität Basel, Klingelbergstraße 82, CH-4056, Basel, Switzerland
108 rdf:type schema:Organization
109 grid-institutes:grid.9811.1 schema:alternateName Fakultät für Physik, Universität Konstanz, Postfach 5560, D-7750, Konstanz 1, Federal Republic of Germany
110 schema:name Fakultät für Physik, Universität Konstanz, Postfach 5560, D-7750, Konstanz 1, Federal Republic of Germany
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...