The Borel property for simple Riesz means View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1986-09

AUTHORS

Viktor Losert

ABSTRACT

We give a necessary and sufficient condition for the Borel property for weighted means. If the sequence of weights is increasing, then Hill's condition is necessary and sufficient.

PAGES

217-226

References to SciGraph publications

  • 1954-12. Some properties of trigonometric series whose terms have random signs in ACTA MATHEMATICA
  • 1956-03. Folgen auf kompakten Räumen in ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITÄT HAMBURG
  • 1970. Theorie der Limitierungsverfahren in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01294600

    DOI

    http://dx.doi.org/10.1007/bf01294600

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1021656999


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Mathematik, Universit\u00e4t Wien, Strudlhofgasse 4, A-1090, Wien, Austria", 
              "id": "http://www.grid.ac/institutes/grid.10420.37", 
              "name": [
                "Institut f\u00fcr Mathematik, Universit\u00e4t Wien, Strudlhofgasse 4, A-1090, Wien, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Losert", 
            "givenName": "Viktor", 
            "id": "sg:person.010014234603.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010014234603.19"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf03374560", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050440941", 
              "https://doi.org/10.1007/bf03374560"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-88470-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023858308", 
              "https://doi.org/10.1007/978-3-642-88470-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02393433", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033143089", 
              "https://doi.org/10.1007/bf02393433"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1986-09", 
        "datePublishedReg": "1986-09-01", 
        "description": "We give a necessary and sufficient condition for the Borel property for weighted means. If the sequence of weights is increasing, then Hill's condition is necessary and sufficient.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01294600", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1049395", 
            "issn": [
              "0026-9255", 
              "1436-5081"
            ], 
            "name": "Monatshefte f\u00fcr Mathematik", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "102"
          }
        ], 
        "keywords": [
          "weight", 
          "conditions", 
          "means", 
          "sequence", 
          "properties", 
          "hill conditions", 
          "sequence of weights", 
          "sufficient conditions", 
          "Riesz", 
          "Borel property", 
          "simple Riesz"
        ], 
        "name": "The Borel property for simple Riesz means", 
        "pagination": "217-226", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1021656999"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01294600"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01294600", 
          "https://app.dimensions.ai/details/publication/pub.1021656999"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_187.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01294600"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01294600'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01294600'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01294600'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01294600'


     

    This table displays all metadata directly associated to this object as RDF triples.

    81 TRIPLES      22 PREDICATES      40 URIs      29 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01294600 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nfd77d3fad0c44c9fa126ba4d80ce2490
    4 schema:citation sg:pub.10.1007/978-3-642-88470-2
    5 sg:pub.10.1007/bf02393433
    6 sg:pub.10.1007/bf03374560
    7 schema:datePublished 1986-09
    8 schema:datePublishedReg 1986-09-01
    9 schema:description We give a necessary and sufficient condition for the Borel property for weighted means. If the sequence of weights is increasing, then Hill's condition is necessary and sufficient.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf Nbd05007975c74d278b2ef5debb496e38
    14 Ned97d38708934bcea53b4b058f87f4f3
    15 sg:journal.1049395
    16 schema:keywords Borel property
    17 Riesz
    18 conditions
    19 hill conditions
    20 means
    21 properties
    22 sequence
    23 sequence of weights
    24 simple Riesz
    25 sufficient conditions
    26 weight
    27 schema:name The Borel property for simple Riesz means
    28 schema:pagination 217-226
    29 schema:productId N210218ba25cb4b169da6ee7afd9bc6a0
    30 N2ee7c0372c234f27aca07d83eb81de83
    31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021656999
    32 https://doi.org/10.1007/bf01294600
    33 schema:sdDatePublished 2021-12-01T19:05
    34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    35 schema:sdPublisher N83ccbdebe13e4088aff0e3265127116b
    36 schema:url https://doi.org/10.1007/bf01294600
    37 sgo:license sg:explorer/license/
    38 sgo:sdDataset articles
    39 rdf:type schema:ScholarlyArticle
    40 N210218ba25cb4b169da6ee7afd9bc6a0 schema:name doi
    41 schema:value 10.1007/bf01294600
    42 rdf:type schema:PropertyValue
    43 N2ee7c0372c234f27aca07d83eb81de83 schema:name dimensions_id
    44 schema:value pub.1021656999
    45 rdf:type schema:PropertyValue
    46 N83ccbdebe13e4088aff0e3265127116b schema:name Springer Nature - SN SciGraph project
    47 rdf:type schema:Organization
    48 Nbd05007975c74d278b2ef5debb496e38 schema:issueNumber 3
    49 rdf:type schema:PublicationIssue
    50 Ned97d38708934bcea53b4b058f87f4f3 schema:volumeNumber 102
    51 rdf:type schema:PublicationVolume
    52 Nfd77d3fad0c44c9fa126ba4d80ce2490 rdf:first sg:person.010014234603.19
    53 rdf:rest rdf:nil
    54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    55 schema:name Mathematical Sciences
    56 rdf:type schema:DefinedTerm
    57 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Pure Mathematics
    59 rdf:type schema:DefinedTerm
    60 sg:journal.1049395 schema:issn 0026-9255
    61 1436-5081
    62 schema:name Monatshefte für Mathematik
    63 schema:publisher Springer Nature
    64 rdf:type schema:Periodical
    65 sg:person.010014234603.19 schema:affiliation grid-institutes:grid.10420.37
    66 schema:familyName Losert
    67 schema:givenName Viktor
    68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010014234603.19
    69 rdf:type schema:Person
    70 sg:pub.10.1007/978-3-642-88470-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023858308
    71 https://doi.org/10.1007/978-3-642-88470-2
    72 rdf:type schema:CreativeWork
    73 sg:pub.10.1007/bf02393433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033143089
    74 https://doi.org/10.1007/bf02393433
    75 rdf:type schema:CreativeWork
    76 sg:pub.10.1007/bf03374560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050440941
    77 https://doi.org/10.1007/bf03374560
    78 rdf:type schema:CreativeWork
    79 grid-institutes:grid.10420.37 schema:alternateName Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090, Wien, Austria
    80 schema:name Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090, Wien, Austria
    81 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...