The absorptive part of the nucleus-nucleus potential in a semiclassical approach View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1987-12

AUTHORS

A. H. Blin, M. Brack, B. Hiller, E. Werner

ABSTRACT

The imaginary part of the optical potential for nuclear ion-ion scattering in the energy range 20 MeV ≲E/A ≲ 200 MeV is derived using Feshbach's projection formalism. It is defined as the effective absorptive potential in the projected one-body Schroedinger equation for the relative motion of the colliding nuclei. Calculations are done in the Thomas-Fermi approximation, which accounts in a simple way for all phase-space effects as well as for the finite size of the ions. Intrinsic excitations are considered to be of one particle — one hole type in either of the ions, the other remaining in its ground state. The effective two-body interaction is taken to be of finite range. Further simplifications of the model consist in neglecting antisymmetrization between the mutual wave functions of the two ions and in the omission of the Coulomb energy. More... »

PAGES

431-444

References to SciGraph publications

  • 1982. On the semiclassical description of adiabatic nuclear motion in DYNAMICS OF NUCLEAR FISSION AND RELATED COLLECTIVE PHENOMENA
  • 1980. The Nuclear Many-Body Problem in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01289629

    DOI

    http://dx.doi.org/10.1007/bf01289629

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1023795392


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, Federal Republic of Germany", 
              "id": "http://www.grid.ac/institutes/grid.7727.5", 
              "name": [
                "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, Federal Republic of Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Blin", 
            "givenName": "A. H.", 
            "id": "sg:person.015752627623.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015752627623.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, Federal Republic of Germany", 
              "id": "http://www.grid.ac/institutes/grid.7727.5", 
              "name": [
                "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, Federal Republic of Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brack", 
            "givenName": "M.", 
            "id": "sg:person.012734147145.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012734147145.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, Federal Republic of Germany", 
              "id": "http://www.grid.ac/institutes/grid.7727.5", 
              "name": [
                "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, Federal Republic of Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hiller", 
            "givenName": "B.", 
            "id": "sg:person.015605243601.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015605243601.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, Federal Republic of Germany", 
              "id": "http://www.grid.ac/institutes/grid.7727.5", 
              "name": [
                "Institut f\u00fcr Theoretische Physik, Universit\u00e4t Regensburg, Federal Republic of Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Werner", 
            "givenName": "E.", 
            "id": "sg:person.013275303046.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013275303046.05"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bfb0021519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028963743", 
              "https://doi.org/10.1007/bfb0021519"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-61852-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109710367", 
              "https://doi.org/10.1007/978-3-642-61852-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1987-12", 
        "datePublishedReg": "1987-12-01", 
        "description": "The imaginary part of the optical potential for nuclear ion-ion scattering in the energy range 20 MeV \u2272E/A \u2272 200 MeV is derived using Feshbach's projection formalism. It is defined as the effective absorptive potential in the projected one-body Schroedinger equation for the relative motion of the colliding nuclei. Calculations are done in the Thomas-Fermi approximation, which accounts in a simple way for all phase-space effects as well as for the finite size of the ions. Intrinsic excitations are considered to be of one particle \u2014 one hole type in either of the ions, the other remaining in its ground state. The effective two-body interaction is taken to be of finite range. Further simplifications of the model consist in neglecting antisymmetrization between the mutual wave functions of the two ions and in the omission of the Coulomb energy.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01289629", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1313831", 
            "issn": [
              "0939-7922", 
              "1431-5831"
            ], 
            "name": "Zeitschrift f\u00fcr Physik A Hadrons and nuclei", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "328"
          }
        ], 
        "keywords": [
          "projection formalism", 
          "ion-ion scattering", 
          "nucleus-nucleus potential", 
          "Feshbach projection formalism", 
          "phase-space effects", 
          "Thomas-Fermi approximation", 
          "two-body interactions", 
          "optical potential", 
          "semiclassical approach", 
          "absorptive potential", 
          "ground state", 
          "wave functions", 
          "Coulomb energy", 
          "imaginary part", 
          "Schroedinger equation", 
          "absorptive part", 
          "intrinsic excitations", 
          "MeV", 
          "finite size", 
          "finite range", 
          "hole type", 
          "ions", 
          "relative motion", 
          "scattering", 
          "excitation", 
          "antisymmetrization", 
          "formalism", 
          "energy", 
          "simple way", 
          "calculations", 
          "nucleus", 
          "approximation", 
          "motion", 
          "further simplification", 
          "potential", 
          "state", 
          "interaction", 
          "range", 
          "equations", 
          "model consist", 
          "size", 
          "function", 
          "consist", 
          "effect", 
          "part", 
          "simplification", 
          "way", 
          "approach", 
          "types", 
          "omission"
        ], 
        "name": "The absorptive part of the nucleus-nucleus potential in a semiclassical approach", 
        "pagination": "431-444", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1023795392"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01289629"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01289629", 
          "https://app.dimensions.ai/details/publication/pub.1023795392"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_213.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01289629"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01289629'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01289629'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01289629'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01289629'


     

    This table displays all metadata directly associated to this object as RDF triples.

    136 TRIPLES      21 PREDICATES      77 URIs      67 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01289629 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author Nd8366ff5f2d5466a8fa1cd457e74f8ef
    4 schema:citation sg:pub.10.1007/978-3-642-61852-9
    5 sg:pub.10.1007/bfb0021519
    6 schema:datePublished 1987-12
    7 schema:datePublishedReg 1987-12-01
    8 schema:description The imaginary part of the optical potential for nuclear ion-ion scattering in the energy range 20 MeV ≲E/A ≲ 200 MeV is derived using Feshbach's projection formalism. It is defined as the effective absorptive potential in the projected one-body Schroedinger equation for the relative motion of the colliding nuclei. Calculations are done in the Thomas-Fermi approximation, which accounts in a simple way for all phase-space effects as well as for the finite size of the ions. Intrinsic excitations are considered to be of one particle — one hole type in either of the ions, the other remaining in its ground state. The effective two-body interaction is taken to be of finite range. Further simplifications of the model consist in neglecting antisymmetrization between the mutual wave functions of the two ions and in the omission of the Coulomb energy.
    9 schema:genre article
    10 schema:isAccessibleForFree true
    11 schema:isPartOf N2dfc4e72860a4599b0389770934af2a1
    12 Nc85920da4d26493a9da7f0c7eb8bb2ed
    13 sg:journal.1313831
    14 schema:keywords Coulomb energy
    15 Feshbach projection formalism
    16 MeV
    17 Schroedinger equation
    18 Thomas-Fermi approximation
    19 absorptive part
    20 absorptive potential
    21 antisymmetrization
    22 approach
    23 approximation
    24 calculations
    25 consist
    26 effect
    27 energy
    28 equations
    29 excitation
    30 finite range
    31 finite size
    32 formalism
    33 function
    34 further simplification
    35 ground state
    36 hole type
    37 imaginary part
    38 interaction
    39 intrinsic excitations
    40 ion-ion scattering
    41 ions
    42 model consist
    43 motion
    44 nucleus
    45 nucleus-nucleus potential
    46 omission
    47 optical potential
    48 part
    49 phase-space effects
    50 potential
    51 projection formalism
    52 range
    53 relative motion
    54 scattering
    55 semiclassical approach
    56 simple way
    57 simplification
    58 size
    59 state
    60 two-body interactions
    61 types
    62 wave functions
    63 way
    64 schema:name The absorptive part of the nucleus-nucleus potential in a semiclassical approach
    65 schema:pagination 431-444
    66 schema:productId N50c882df0e054378aa38a06026e33909
    67 N6603cefd084d40d99219b2e8506ba675
    68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023795392
    69 https://doi.org/10.1007/bf01289629
    70 schema:sdDatePublished 2022-10-01T06:28
    71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    72 schema:sdPublisher Ne6d80eb28be848e7adfceefa067c625f
    73 schema:url https://doi.org/10.1007/bf01289629
    74 sgo:license sg:explorer/license/
    75 sgo:sdDataset articles
    76 rdf:type schema:ScholarlyArticle
    77 N2dfc4e72860a4599b0389770934af2a1 schema:issueNumber 4
    78 rdf:type schema:PublicationIssue
    79 N50c882df0e054378aa38a06026e33909 schema:name doi
    80 schema:value 10.1007/bf01289629
    81 rdf:type schema:PropertyValue
    82 N6603cefd084d40d99219b2e8506ba675 schema:name dimensions_id
    83 schema:value pub.1023795392
    84 rdf:type schema:PropertyValue
    85 N76c45a6d037347dbbe91a92693a92341 rdf:first sg:person.015605243601.33
    86 rdf:rest N9eddce5d89a343b9ade427c50e1212d6
    87 N83518a23690c4c39b86bafdf521263c0 rdf:first sg:person.012734147145.29
    88 rdf:rest N76c45a6d037347dbbe91a92693a92341
    89 N9eddce5d89a343b9ade427c50e1212d6 rdf:first sg:person.013275303046.05
    90 rdf:rest rdf:nil
    91 Nc85920da4d26493a9da7f0c7eb8bb2ed schema:volumeNumber 328
    92 rdf:type schema:PublicationVolume
    93 Nd8366ff5f2d5466a8fa1cd457e74f8ef rdf:first sg:person.015752627623.90
    94 rdf:rest N83518a23690c4c39b86bafdf521263c0
    95 Ne6d80eb28be848e7adfceefa067c625f schema:name Springer Nature - SN SciGraph project
    96 rdf:type schema:Organization
    97 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Physical Sciences
    99 rdf:type schema:DefinedTerm
    100 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Other Physical Sciences
    102 rdf:type schema:DefinedTerm
    103 sg:journal.1313831 schema:issn 0939-7922
    104 1431-5831
    105 schema:name Zeitschrift für Physik A Hadrons and nuclei
    106 schema:publisher Springer Nature
    107 rdf:type schema:Periodical
    108 sg:person.012734147145.29 schema:affiliation grid-institutes:grid.7727.5
    109 schema:familyName Brack
    110 schema:givenName M.
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012734147145.29
    112 rdf:type schema:Person
    113 sg:person.013275303046.05 schema:affiliation grid-institutes:grid.7727.5
    114 schema:familyName Werner
    115 schema:givenName E.
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013275303046.05
    117 rdf:type schema:Person
    118 sg:person.015605243601.33 schema:affiliation grid-institutes:grid.7727.5
    119 schema:familyName Hiller
    120 schema:givenName B.
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015605243601.33
    122 rdf:type schema:Person
    123 sg:person.015752627623.90 schema:affiliation grid-institutes:grid.7727.5
    124 schema:familyName Blin
    125 schema:givenName A. H.
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015752627623.90
    127 rdf:type schema:Person
    128 sg:pub.10.1007/978-3-642-61852-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109710367
    129 https://doi.org/10.1007/978-3-642-61852-9
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/bfb0021519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028963743
    132 https://doi.org/10.1007/bfb0021519
    133 rdf:type schema:CreativeWork
    134 grid-institutes:grid.7727.5 schema:alternateName Institut für Theoretische Physik, Universität Regensburg, Federal Republic of Germany
    135 schema:name Institut für Theoretische Physik, Universität Regensburg, Federal Republic of Germany
    136 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...