Bayesian kriging—Merging observations and qualified guesses in kriging View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-01

AUTHORS

Henning Omre

ABSTRACT

Frequently a user wants to merge general knowledge of the regionalized variable under study with available observations. Introduction of fake observations is the usual way of doing this. Bayesian kriging allows the user to specify a qualified guess, associated with uncertainty, for the expected surface. The method will provide predictions which are based on both observations and this qualified guess. More... »

PAGES

25-39

References to SciGraph publications

  • 1980. Statistical Decision Theory, Foundations, Concepts, and Methods in NONE
  • 1984. Bayesian Kriging in Geotechnical Problems in GEOSTATISTICS FOR NATURAL RESOURCES CHARACTERIZATION
  • Journal

    TITLE

    Mathematical Geosciences

    ISSUE

    1

    VOLUME

    19

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01275432

    DOI

    http://dx.doi.org/10.1007/bf01275432

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1012502003


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Norwegian Computing Center", 
              "id": "https://www.grid.ac/institutes/grid.425871.d", 
              "name": [
                "Norwegian Computing Center, Blindern 0314, P.O. Box 335, Oslo 3, Norway"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Omre", 
            "givenName": "Henning", 
            "id": "sg:person.010077152301.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010077152301.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4757-1727-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006478075", 
              "https://doi.org/10.1007/978-1-4757-1727-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-1727-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006478075", 
              "https://doi.org/10.1007/978-1-4757-1727-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-12-434065-7.50014-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020937598"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-3701-7_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089757683", 
              "https://doi.org/10.1007/978-94-009-3701-7_13"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1987-01", 
        "datePublishedReg": "1987-01-01", 
        "description": "Frequently a user wants to merge general knowledge of the regionalized variable under study with available observations. Introduction of fake observations is the usual way of doing this. Bayesian kriging allows the user to specify a qualified guess, associated with uncertainty, for the expected surface. The method will provide predictions which are based on both observations and this qualified guess.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01275432", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1039818", 
            "issn": [
              "1874-8961", 
              "1874-8953"
            ], 
            "name": "Mathematical Geosciences", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "19"
          }
        ], 
        "name": "Bayesian kriging\u2014Merging observations and qualified guesses in kriging", 
        "pagination": "25-39", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3b8fcfec356b244b4035df9751bd643c30f4c241a15223a4c50c63e7c44acbd3"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01275432"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1012502003"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01275432", 
          "https://app.dimensions.ai/details/publication/pub.1012502003"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46777_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01275432"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01275432'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01275432'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01275432'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01275432'


     

    This table displays all metadata directly associated to this object as RDF triples.

    72 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01275432 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author Ne70d2f57343c40aeb74ef9aa1ce116e3
    4 schema:citation sg:pub.10.1007/978-1-4757-1727-3
    5 sg:pub.10.1007/978-94-009-3701-7_13
    6 https://doi.org/10.1016/b978-0-12-434065-7.50014-9
    7 schema:datePublished 1987-01
    8 schema:datePublishedReg 1987-01-01
    9 schema:description Frequently a user wants to merge general knowledge of the regionalized variable under study with available observations. Introduction of fake observations is the usual way of doing this. Bayesian kriging allows the user to specify a qualified guess, associated with uncertainty, for the expected surface. The method will provide predictions which are based on both observations and this qualified guess.
    10 schema:genre research_article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N062df028070147acb4d9b1172f9886e4
    14 N9fd931830321441fb8937c64d6a36a32
    15 sg:journal.1039818
    16 schema:name Bayesian kriging—Merging observations and qualified guesses in kriging
    17 schema:pagination 25-39
    18 schema:productId N10a34514886b48f8aa368994e59ce42b
    19 Ne2cc5be81d2f4e48b1ad57deccdaedda
    20 Nf4a83e676a7043e3a40262fe9b6a055f
    21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012502003
    22 https://doi.org/10.1007/bf01275432
    23 schema:sdDatePublished 2019-04-11T13:35
    24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    25 schema:sdPublisher N194d6bcf4d8d409b805efa5304a6256b
    26 schema:url http://link.springer.com/10.1007/BF01275432
    27 sgo:license sg:explorer/license/
    28 sgo:sdDataset articles
    29 rdf:type schema:ScholarlyArticle
    30 N062df028070147acb4d9b1172f9886e4 schema:issueNumber 1
    31 rdf:type schema:PublicationIssue
    32 N10a34514886b48f8aa368994e59ce42b schema:name dimensions_id
    33 schema:value pub.1012502003
    34 rdf:type schema:PropertyValue
    35 N194d6bcf4d8d409b805efa5304a6256b schema:name Springer Nature - SN SciGraph project
    36 rdf:type schema:Organization
    37 N9fd931830321441fb8937c64d6a36a32 schema:volumeNumber 19
    38 rdf:type schema:PublicationVolume
    39 Ne2cc5be81d2f4e48b1ad57deccdaedda schema:name doi
    40 schema:value 10.1007/bf01275432
    41 rdf:type schema:PropertyValue
    42 Ne70d2f57343c40aeb74ef9aa1ce116e3 rdf:first sg:person.010077152301.47
    43 rdf:rest rdf:nil
    44 Nf4a83e676a7043e3a40262fe9b6a055f schema:name readcube_id
    45 schema:value 3b8fcfec356b244b4035df9751bd643c30f4c241a15223a4c50c63e7c44acbd3
    46 rdf:type schema:PropertyValue
    47 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    48 schema:name Mathematical Sciences
    49 rdf:type schema:DefinedTerm
    50 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    51 schema:name Statistics
    52 rdf:type schema:DefinedTerm
    53 sg:journal.1039818 schema:issn 1874-8953
    54 1874-8961
    55 schema:name Mathematical Geosciences
    56 rdf:type schema:Periodical
    57 sg:person.010077152301.47 schema:affiliation https://www.grid.ac/institutes/grid.425871.d
    58 schema:familyName Omre
    59 schema:givenName Henning
    60 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010077152301.47
    61 rdf:type schema:Person
    62 sg:pub.10.1007/978-1-4757-1727-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006478075
    63 https://doi.org/10.1007/978-1-4757-1727-3
    64 rdf:type schema:CreativeWork
    65 sg:pub.10.1007/978-94-009-3701-7_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089757683
    66 https://doi.org/10.1007/978-94-009-3701-7_13
    67 rdf:type schema:CreativeWork
    68 https://doi.org/10.1016/b978-0-12-434065-7.50014-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020937598
    69 rdf:type schema:CreativeWork
    70 https://www.grid.ac/institutes/grid.425871.d schema:alternateName Norwegian Computing Center
    71 schema:name Norwegian Computing Center, Blindern 0314, P.O. Box 335, Oslo 3, Norway
    72 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...