Ontology type: schema:ScholarlyArticle
1987-01
AUTHORS ABSTRACTFrequently a user wants to merge general knowledge of the regionalized variable under study with available observations. Introduction of fake observations is the usual way of doing this. Bayesian kriging allows the user to specify a qualified guess, associated with uncertainty, for the expected surface. The method will provide predictions which are based on both observations and this qualified guess. More... »
PAGES25-39
http://scigraph.springernature.com/pub.10.1007/bf01275432
DOIhttp://dx.doi.org/10.1007/bf01275432
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1012502003
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Statistics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Norwegian Computing Center",
"id": "https://www.grid.ac/institutes/grid.425871.d",
"name": [
"Norwegian Computing Center, Blindern 0314, P.O. Box 335, Oslo 3, Norway"
],
"type": "Organization"
},
"familyName": "Omre",
"givenName": "Henning",
"id": "sg:person.010077152301.47",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010077152301.47"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-1-4757-1727-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006478075",
"https://doi.org/10.1007/978-1-4757-1727-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4757-1727-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006478075",
"https://doi.org/10.1007/978-1-4757-1727-3"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/b978-0-12-434065-7.50014-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020937598"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-009-3701-7_13",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1089757683",
"https://doi.org/10.1007/978-94-009-3701-7_13"
],
"type": "CreativeWork"
}
],
"datePublished": "1987-01",
"datePublishedReg": "1987-01-01",
"description": "Frequently a user wants to merge general knowledge of the regionalized variable under study with available observations. Introduction of fake observations is the usual way of doing this. Bayesian kriging allows the user to specify a qualified guess, associated with uncertainty, for the expected surface. The method will provide predictions which are based on both observations and this qualified guess.",
"genre": "research_article",
"id": "sg:pub.10.1007/bf01275432",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1039818",
"issn": [
"1874-8961",
"1874-8953"
],
"name": "Mathematical Geosciences",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "19"
}
],
"name": "Bayesian kriging\u2014Merging observations and qualified guesses in kriging",
"pagination": "25-39",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"3b8fcfec356b244b4035df9751bd643c30f4c241a15223a4c50c63e7c44acbd3"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf01275432"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1012502003"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf01275432",
"https://app.dimensions.ai/details/publication/pub.1012502003"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T13:35",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46777_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007/BF01275432"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01275432'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01275432'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01275432'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01275432'
This table displays all metadata directly associated to this object as RDF triples.
72 TRIPLES
21 PREDICATES
30 URIs
19 LITERALS
7 BLANK NODES