Ontology type: schema:ScholarlyArticle
1993-07
AUTHORSFrank S. C. Tseng, Arbee L. P. Chen, Wei-Pang Yang
ABSTRACTIn heterogeneous database systems,partial values have been used to resolve some schema integration problems. Performing operations on partial values may producemaybe tuples in the query result which cannot be compared. Thus, users have no way to distinguish which maybe tuple is the most possible answer. In this paper, the concept of partial values is generalized toprobabilistic partial values. We propose an approach to resolve the schema integration problems using probabilistic partial values and develop a full set of extended relational operators for manipulating relations containing probabilistic partial values. With this approach, the uncertain answer tuples of a query are associated with degrees of uncertainty (represented by probabilities). That provides users a comparison among maybe tuples and a better understanding on the query results. Besides, extended selection and join are generalized to α-selection and α-join, respectively, which can be used to filter out maybe tuples with low probabilities — those which have probabilities smaller than α. More... »
PAGES281-302
http://scigraph.springernature.com/pub.10.1007/bf01263334
DOIhttp://dx.doi.org/10.1007/bf01263334
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1041333619
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information Systems",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu, Taiwan, 30050 ROC",
"id": "http://www.grid.ac/institutes/grid.260539.b",
"name": [
"Department of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu, Taiwan, 30050 ROC"
],
"type": "Organization"
},
"familyName": "Tseng",
"givenName": "Frank S. C.",
"id": "sg:person.013670725341.44",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013670725341.44"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, 30043 ROC",
"id": "http://www.grid.ac/institutes/grid.38348.34",
"name": [
"Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, 30043 ROC"
],
"type": "Organization"
},
"familyName": "Chen",
"givenName": "Arbee L. P.",
"id": "sg:person.011521402733.54",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011521402733.54"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu, Taiwan, 30050 ROC",
"id": "http://www.grid.ac/institutes/grid.260539.b",
"name": [
"Department of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu, Taiwan, 30050 ROC"
],
"type": "Organization"
},
"familyName": "Yang",
"givenName": "Wei-Pang",
"id": "sg:person.014374171260.51",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014374171260.51"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bfb0022164",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048792183",
"https://doi.org/10.1007/bfb0022164"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0022171",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030943629",
"https://doi.org/10.1007/bfb0022171"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01263049",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004849095",
"https://doi.org/10.1007/bf01263049"
],
"type": "CreativeWork"
}
],
"datePublished": "1993-07",
"datePublishedReg": "1993-07-01",
"description": "In heterogeneous database systems,partial values have been used to resolve some schema integration problems. Performing operations on partial values may producemaybe tuples in the query result which cannot be compared. Thus, users have no way to distinguish which maybe tuple is the most possible answer. In this paper, the concept of partial values is generalized toprobabilistic partial values. We propose an approach to resolve the schema integration problems using probabilistic partial values and develop a full set of extended relational operators for manipulating relations containing probabilistic partial values. With this approach, the uncertain answer tuples of a query are associated with degrees of uncertainty (represented by probabilities). That provides users a comparison among maybe tuples and a better understanding on the query results. Besides, extended selection and join are generalized to \u03b1-selection and \u03b1-join, respectively, which can be used to filter out maybe tuples with low probabilities \u2014 those which have probabilities smaller than \u03b1.",
"genre": "article",
"id": "sg:pub.10.1007/bf01263334",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136670",
"issn": [
"0926-8782",
"1573-7578"
],
"name": "Distributed and Parallel Databases",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "1"
}
],
"keywords": [
"query results",
"integration problems",
"heterogeneous database systems",
"extended relational operators",
"partial values",
"answer tuples",
"heterogeneous databases",
"database systems",
"relational operators",
"degree of uncertainty",
"tuples",
"users",
"join",
"queries",
"possible answers",
"full set",
"database",
"selection",
"set",
"operators",
"uncertainty",
"system",
"operation",
"probability",
"concept",
"way",
"answers",
"results",
"low probability",
"better understanding",
"values",
"degree",
"comparison",
"understanding",
"relation",
"problem",
"approach",
"paper"
],
"name": "Answering heterogeneous database queries with degrees of uncertainty",
"pagination": "281-302",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1041333619"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf01263334"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf01263334",
"https://app.dimensions.ai/details/publication/pub.1041333619"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:47",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_258.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf01263334"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01263334'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01263334'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01263334'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01263334'
This table displays all metadata directly associated to this object as RDF triples.
125 TRIPLES
22 PREDICATES
67 URIs
56 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf01263334 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0806 |
3 | ″ | schema:author | N745acbd3367c4770bb65a21382bdfcab |
4 | ″ | schema:citation | sg:pub.10.1007/bf01263049 |
5 | ″ | ″ | sg:pub.10.1007/bfb0022164 |
6 | ″ | ″ | sg:pub.10.1007/bfb0022171 |
7 | ″ | schema:datePublished | 1993-07 |
8 | ″ | schema:datePublishedReg | 1993-07-01 |
9 | ″ | schema:description | In heterogeneous database systems,partial values have been used to resolve some schema integration problems. Performing operations on partial values may producemaybe tuples in the query result which cannot be compared. Thus, users have no way to distinguish which maybe tuple is the most possible answer. In this paper, the concept of partial values is generalized toprobabilistic partial values. We propose an approach to resolve the schema integration problems using probabilistic partial values and develop a full set of extended relational operators for manipulating relations containing probabilistic partial values. With this approach, the uncertain answer tuples of a query are associated with degrees of uncertainty (represented by probabilities). That provides users a comparison among maybe tuples and a better understanding on the query results. Besides, extended selection and join are generalized to α-selection and α-join, respectively, which can be used to filter out maybe tuples with low probabilities — those which have probabilities smaller than α. |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N6218f925269b4243bf2a5a32c0b6b742 |
14 | ″ | ″ | Nbd619162b680422f949fe2ee0027fb4b |
15 | ″ | ″ | sg:journal.1136670 |
16 | ″ | schema:keywords | answer tuples |
17 | ″ | ″ | answers |
18 | ″ | ″ | approach |
19 | ″ | ″ | better understanding |
20 | ″ | ″ | comparison |
21 | ″ | ″ | concept |
22 | ″ | ″ | database |
23 | ″ | ″ | database systems |
24 | ″ | ″ | degree |
25 | ″ | ″ | degree of uncertainty |
26 | ″ | ″ | extended relational operators |
27 | ″ | ″ | full set |
28 | ″ | ″ | heterogeneous database systems |
29 | ″ | ″ | heterogeneous databases |
30 | ″ | ″ | integration problems |
31 | ″ | ″ | join |
32 | ″ | ″ | low probability |
33 | ″ | ″ | operation |
34 | ″ | ″ | operators |
35 | ″ | ″ | paper |
36 | ″ | ″ | partial values |
37 | ″ | ″ | possible answers |
38 | ″ | ″ | probability |
39 | ″ | ″ | problem |
40 | ″ | ″ | queries |
41 | ″ | ″ | query results |
42 | ″ | ″ | relation |
43 | ″ | ″ | relational operators |
44 | ″ | ″ | results |
45 | ″ | ″ | selection |
46 | ″ | ″ | set |
47 | ″ | ″ | system |
48 | ″ | ″ | tuples |
49 | ″ | ″ | uncertainty |
50 | ″ | ″ | understanding |
51 | ″ | ″ | users |
52 | ″ | ″ | values |
53 | ″ | ″ | way |
54 | ″ | schema:name | Answering heterogeneous database queries with degrees of uncertainty |
55 | ″ | schema:pagination | 281-302 |
56 | ″ | schema:productId | N4f9e7b26a7de4505b809584766d16880 |
57 | ″ | ″ | Na32e0f9c32af4431964765035d5ce23f |
58 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1041333619 |
59 | ″ | ″ | https://doi.org/10.1007/bf01263334 |
60 | ″ | schema:sdDatePublished | 2022-05-10T09:47 |
61 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
62 | ″ | schema:sdPublisher | N907b7c8dedcd4cb8b0adbc331bb9c3bd |
63 | ″ | schema:url | https://doi.org/10.1007/bf01263334 |
64 | ″ | sgo:license | sg:explorer/license/ |
65 | ″ | sgo:sdDataset | articles |
66 | ″ | rdf:type | schema:ScholarlyArticle |
67 | N4f9e7b26a7de4505b809584766d16880 | schema:name | dimensions_id |
68 | ″ | schema:value | pub.1041333619 |
69 | ″ | rdf:type | schema:PropertyValue |
70 | N6218f925269b4243bf2a5a32c0b6b742 | schema:issueNumber | 3 |
71 | ″ | rdf:type | schema:PublicationIssue |
72 | N742139761f334e4492b2e4d8bbba2915 | rdf:first | sg:person.014374171260.51 |
73 | ″ | rdf:rest | rdf:nil |
74 | N745acbd3367c4770bb65a21382bdfcab | rdf:first | sg:person.013670725341.44 |
75 | ″ | rdf:rest | Nead3079fecc7496f8d87448035387975 |
76 | N907b7c8dedcd4cb8b0adbc331bb9c3bd | schema:name | Springer Nature - SN SciGraph project |
77 | ″ | rdf:type | schema:Organization |
78 | Na32e0f9c32af4431964765035d5ce23f | schema:name | doi |
79 | ″ | schema:value | 10.1007/bf01263334 |
80 | ″ | rdf:type | schema:PropertyValue |
81 | Nbd619162b680422f949fe2ee0027fb4b | schema:volumeNumber | 1 |
82 | ″ | rdf:type | schema:PublicationVolume |
83 | Nead3079fecc7496f8d87448035387975 | rdf:first | sg:person.011521402733.54 |
84 | ″ | rdf:rest | N742139761f334e4492b2e4d8bbba2915 |
85 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
86 | ″ | schema:name | Information and Computing Sciences |
87 | ″ | rdf:type | schema:DefinedTerm |
88 | anzsrc-for:0806 | schema:inDefinedTermSet | anzsrc-for: |
89 | ″ | schema:name | Information Systems |
90 | ″ | rdf:type | schema:DefinedTerm |
91 | sg:journal.1136670 | schema:issn | 0926-8782 |
92 | ″ | ″ | 1573-7578 |
93 | ″ | schema:name | Distributed and Parallel Databases |
94 | ″ | schema:publisher | Springer Nature |
95 | ″ | rdf:type | schema:Periodical |
96 | sg:person.011521402733.54 | schema:affiliation | grid-institutes:grid.38348.34 |
97 | ″ | schema:familyName | Chen |
98 | ″ | schema:givenName | Arbee L. P. |
99 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011521402733.54 |
100 | ″ | rdf:type | schema:Person |
101 | sg:person.013670725341.44 | schema:affiliation | grid-institutes:grid.260539.b |
102 | ″ | schema:familyName | Tseng |
103 | ″ | schema:givenName | Frank S. C. |
104 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013670725341.44 |
105 | ″ | rdf:type | schema:Person |
106 | sg:person.014374171260.51 | schema:affiliation | grid-institutes:grid.260539.b |
107 | ″ | schema:familyName | Yang |
108 | ″ | schema:givenName | Wei-Pang |
109 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014374171260.51 |
110 | ″ | rdf:type | schema:Person |
111 | sg:pub.10.1007/bf01263049 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1004849095 |
112 | ″ | ″ | https://doi.org/10.1007/bf01263049 |
113 | ″ | rdf:type | schema:CreativeWork |
114 | sg:pub.10.1007/bfb0022164 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1048792183 |
115 | ″ | ″ | https://doi.org/10.1007/bfb0022164 |
116 | ″ | rdf:type | schema:CreativeWork |
117 | sg:pub.10.1007/bfb0022171 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1030943629 |
118 | ″ | ″ | https://doi.org/10.1007/bfb0022171 |
119 | ″ | rdf:type | schema:CreativeWork |
120 | grid-institutes:grid.260539.b | schema:alternateName | Department of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu, Taiwan, 30050 ROC |
121 | ″ | schema:name | Department of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu, Taiwan, 30050 ROC |
122 | ″ | rdf:type | schema:Organization |
123 | grid-institutes:grid.38348.34 | schema:alternateName | Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, 30043 ROC |
124 | ″ | schema:name | Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, 30043 ROC |
125 | ″ | rdf:type | schema:Organization |