On the Nevanlinna-Pick interpolation problem for generalized stieltjes functions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1998-12

AUTHORS

D. Alpay, V. Bolotnikov, A. Dijksma

ABSTRACT

The solutions of the Nevanlinna-Pick interpolation problem for generalized Stieltjes matrix functions are parametrized via a fractional linear transformation over a subset of the class of classical Stieltjes functions. The fractional linear transformation of some of these functions may have a pole in one or more of the interpolation points, hence not all Stieltjes functions can serve as a parameter. The set of excluded parameters is characterized in terms of the two related Pick matrices. More... »

PAGES

379-408

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01257874

DOI

http://dx.doi.org/10.1007/bf01257874

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048992824


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ben-Gurion University of the Negev", 
          "id": "https://www.grid.ac/institutes/grid.7489.2", 
          "name": [
            "Department of Mathematics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alpay", 
        "givenName": "D.", 
        "id": "sg:person.011517101346.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517101346.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Weizmann Institute of Science", 
          "id": "https://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Department of Theoretical Mathematics, The Weizmann Institute of Science, 76100, Rehovot, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bolotnikov", 
        "givenName": "V.", 
        "id": "sg:person.01130533744.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Department of Mathematics, University of of Groningen, 9700 AV, Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dijksma", 
        "givenName": "A.", 
        "id": "sg:person.013762723211.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0024-3795(94)90458-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007136198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8944-5_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015755621", 
          "https://doi.org/10.1007/978-3-0348-8944-5_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.19770770116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027367955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8581-2_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049786697", 
          "https://doi.org/10.1007/978-3-0348-8581-2_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8581-2_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049786697", 
          "https://doi.org/10.1007/978-3-0348-8581-2_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/trans2/131/07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089184106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/mmono/050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101567826"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-12", 
    "datePublishedReg": "1998-12-01", 
    "description": "The solutions of the Nevanlinna-Pick interpolation problem for generalized Stieltjes matrix functions are parametrized via a fractional linear transformation over a subset of the class of classical Stieltjes functions. The fractional linear transformation of some of these functions may have a pole in one or more of the interpolation points, hence not all Stieltjes functions can serve as a parameter. The set of excluded parameters is characterized in terms of the two related Pick matrices.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01257874", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136245", 
        "issn": [
          "0378-620X", 
          "1420-8989"
        ], 
        "name": "Integral Equations and Operator Theory", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "name": "On the Nevanlinna-Pick interpolation problem for generalized stieltjes functions", 
    "pagination": "379-408", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e9650985c3c86da3fd5971c7c7915fca891fe1b9aad2ec1473a169510463fadb"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01257874"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048992824"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01257874", 
      "https://app.dimensions.ai/details/publication/pub.1048992824"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46757_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01257874"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01257874'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01257874'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01257874'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01257874'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01257874 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nd9746ffc9fdd4a2abb17b45f23f16911
4 schema:citation sg:pub.10.1007/978-3-0348-8581-2_2
5 sg:pub.10.1007/978-3-0348-8944-5_4
6 https://doi.org/10.1002/mana.19770770116
7 https://doi.org/10.1016/0024-3795(94)90458-8
8 https://doi.org/10.1090/mmono/050
9 https://doi.org/10.1090/trans2/131/07
10 schema:datePublished 1998-12
11 schema:datePublishedReg 1998-12-01
12 schema:description The solutions of the Nevanlinna-Pick interpolation problem for generalized Stieltjes matrix functions are parametrized via a fractional linear transformation over a subset of the class of classical Stieltjes functions. The fractional linear transformation of some of these functions may have a pole in one or more of the interpolation points, hence not all Stieltjes functions can serve as a parameter. The set of excluded parameters is characterized in terms of the two related Pick matrices.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree true
16 schema:isPartOf N03f101acc206435ca193741c7478c08f
17 N8dc72a0a707e40249b1d1599a387737d
18 sg:journal.1136245
19 schema:name On the Nevanlinna-Pick interpolation problem for generalized stieltjes functions
20 schema:pagination 379-408
21 schema:productId N15c8b81a3f234b45881e4b2f3dfd07c2
22 N5ce6d674540e439680b5d5b42f8c5d05
23 Nb6293ed299974fada453e5ae396527f9
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048992824
25 https://doi.org/10.1007/bf01257874
26 schema:sdDatePublished 2019-04-11T13:31
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher Nf74ac2630cce4d6ab43686859e8eb99d
29 schema:url http://link.springer.com/10.1007/BF01257874
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N03f101acc206435ca193741c7478c08f schema:volumeNumber 30
34 rdf:type schema:PublicationVolume
35 N15c8b81a3f234b45881e4b2f3dfd07c2 schema:name dimensions_id
36 schema:value pub.1048992824
37 rdf:type schema:PropertyValue
38 N5ce6d674540e439680b5d5b42f8c5d05 schema:name doi
39 schema:value 10.1007/bf01257874
40 rdf:type schema:PropertyValue
41 N72e10b1b9c8b4ac3867c89e8be9a8775 rdf:first sg:person.013762723211.39
42 rdf:rest rdf:nil
43 N8dc72a0a707e40249b1d1599a387737d schema:issueNumber 4
44 rdf:type schema:PublicationIssue
45 Nb6293ed299974fada453e5ae396527f9 schema:name readcube_id
46 schema:value e9650985c3c86da3fd5971c7c7915fca891fe1b9aad2ec1473a169510463fadb
47 rdf:type schema:PropertyValue
48 Nd9746ffc9fdd4a2abb17b45f23f16911 rdf:first sg:person.011517101346.40
49 rdf:rest Neb96aeea98d54656b22f082443b290b5
50 Neb96aeea98d54656b22f082443b290b5 rdf:first sg:person.01130533744.43
51 rdf:rest N72e10b1b9c8b4ac3867c89e8be9a8775
52 Nf74ac2630cce4d6ab43686859e8eb99d schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mathematical Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
58 schema:name Pure Mathematics
59 rdf:type schema:DefinedTerm
60 sg:journal.1136245 schema:issn 0378-620X
61 1420-8989
62 schema:name Integral Equations and Operator Theory
63 rdf:type schema:Periodical
64 sg:person.01130533744.43 schema:affiliation https://www.grid.ac/institutes/grid.13992.30
65 schema:familyName Bolotnikov
66 schema:givenName V.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43
68 rdf:type schema:Person
69 sg:person.011517101346.40 schema:affiliation https://www.grid.ac/institutes/grid.7489.2
70 schema:familyName Alpay
71 schema:givenName D.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517101346.40
73 rdf:type schema:Person
74 sg:person.013762723211.39 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
75 schema:familyName Dijksma
76 schema:givenName A.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39
78 rdf:type schema:Person
79 sg:pub.10.1007/978-3-0348-8581-2_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049786697
80 https://doi.org/10.1007/978-3-0348-8581-2_2
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/978-3-0348-8944-5_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015755621
83 https://doi.org/10.1007/978-3-0348-8944-5_4
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1002/mana.19770770116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027367955
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/0024-3795(94)90458-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007136198
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1090/mmono/050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101567826
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1090/trans2/131/07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089184106
92 rdf:type schema:CreativeWork
93 https://www.grid.ac/institutes/grid.13992.30 schema:alternateName Weizmann Institute of Science
94 schema:name Department of Theoretical Mathematics, The Weizmann Institute of Science, 76100, Rehovot, Israel
95 rdf:type schema:Organization
96 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
97 schema:name Department of Mathematics, University of of Groningen, 9700 AV, Groningen, The Netherlands
98 rdf:type schema:Organization
99 https://www.grid.ac/institutes/grid.7489.2 schema:alternateName Ben-Gurion University of the Negev
100 schema:name Department of Mathematics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...