An estimate for the solutions of stokes equations in exterior domains View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-01

AUTHORS

P. Maremonti, V. A. Solonnikov

ABSTRACT

A boundary value problem for the Stokes equations is examined in an exterior domain Ω ⊂ℝnwith a uniform Dirichlet condition on the boundary and a homogeneous condition at infinity. It is shown that estimating the norm Lp(Ω) of the second derivatives of the velocity vector field by the same norm of the exterior forces vector field is correct for p < n/2, but not for p ≥ n/2. This estimate is valid also for p ≥ n/2 if the boundary conditions are modified at infinity. More... »

PAGES

229-239

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01249337

DOI

http://dx.doi.org/10.1007/bf01249337

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006070792


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Maremonti", 
        "givenName": "P.", 
        "id": "sg:person.013455046314.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013455046314.71"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Solonnikov", 
        "givenName": "V. A.", 
        "id": "sg:person.015735637201.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015735637201.06"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1994-01", 
    "datePublishedReg": "1994-01-01", 
    "description": "A boundary value problem for the Stokes equations is examined in an exterior domain \u03a9 \u2282\u211dnwith a uniform Dirichlet condition on the boundary and a homogeneous condition at infinity. It is shown that estimating the norm Lp(\u03a9) of the second derivatives of the velocity vector field by the same norm of the exterior forces vector field is correct for p < n/2, but not for p \u2265 n/2. This estimate is valid also for p \u2265 n/2 if the boundary conditions are modified at infinity.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01249337", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136516", 
        "issn": [
          "1072-3374", 
          "1573-8795"
        ], 
        "name": "Journal of Mathematical Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "68"
      }
    ], 
    "name": "An estimate for the solutions of stokes equations in exterior domains", 
    "pagination": "229-239", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1ceb191eb92fdd08af1b3cab077abaa8598c6848debf89f1e10fdc8e425d23bb"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01249337"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006070792"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01249337", 
      "https://app.dimensions.ai/details/publication/pub.1006070792"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01249337"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01249337'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01249337'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01249337'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01249337'


 

This table displays all metadata directly associated to this object as RDF triples.

63 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01249337 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nf6daf7c7ad2e4c7f8a6a9b9dbe98a99e
4 schema:datePublished 1994-01
5 schema:datePublishedReg 1994-01-01
6 schema:description A boundary value problem for the Stokes equations is examined in an exterior domain Ω ⊂ℝnwith a uniform Dirichlet condition on the boundary and a homogeneous condition at infinity. It is shown that estimating the norm Lp(Ω) of the second derivatives of the velocity vector field by the same norm of the exterior forces vector field is correct for p < n/2, but not for p ≥ n/2. This estimate is valid also for p ≥ n/2 if the boundary conditions are modified at infinity.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N0714cea3a8d447e9806f1d31b1c61462
11 N1dcddf4ed0a5498485f555295913f72f
12 sg:journal.1136516
13 schema:name An estimate for the solutions of stokes equations in exterior domains
14 schema:pagination 229-239
15 schema:productId Nab9b62674f20476081bc65409e6b0d9b
16 Nd3b06ad79b9548f294c2f43184975963
17 Ne929e974bced4e048bd4dd02bde9ad3e
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006070792
19 https://doi.org/10.1007/bf01249337
20 schema:sdDatePublished 2019-04-10T23:20
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Ncdec02f711f54a51bb29bbb824493fbf
23 schema:url http://link.springer.com/10.1007/BF01249337
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N0714cea3a8d447e9806f1d31b1c61462 schema:volumeNumber 68
28 rdf:type schema:PublicationVolume
29 N1dcddf4ed0a5498485f555295913f72f schema:issueNumber 2
30 rdf:type schema:PublicationIssue
31 N6a6b02d7602d46e8995116f10ed6a283 rdf:first sg:person.015735637201.06
32 rdf:rest rdf:nil
33 Nab9b62674f20476081bc65409e6b0d9b schema:name doi
34 schema:value 10.1007/bf01249337
35 rdf:type schema:PropertyValue
36 Ncdec02f711f54a51bb29bbb824493fbf schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 Nd3b06ad79b9548f294c2f43184975963 schema:name readcube_id
39 schema:value 1ceb191eb92fdd08af1b3cab077abaa8598c6848debf89f1e10fdc8e425d23bb
40 rdf:type schema:PropertyValue
41 Ne929e974bced4e048bd4dd02bde9ad3e schema:name dimensions_id
42 schema:value pub.1006070792
43 rdf:type schema:PropertyValue
44 Nf6daf7c7ad2e4c7f8a6a9b9dbe98a99e rdf:first sg:person.013455046314.71
45 rdf:rest N6a6b02d7602d46e8995116f10ed6a283
46 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
47 schema:name Mathematical Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
50 schema:name Pure Mathematics
51 rdf:type schema:DefinedTerm
52 sg:journal.1136516 schema:issn 1072-3374
53 1573-8795
54 schema:name Journal of Mathematical Sciences
55 rdf:type schema:Periodical
56 sg:person.013455046314.71 schema:familyName Maremonti
57 schema:givenName P.
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013455046314.71
59 rdf:type schema:Person
60 sg:person.015735637201.06 schema:familyName Solonnikov
61 schema:givenName V. A.
62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015735637201.06
63 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...