Geometry of Skyrmions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-09

AUTHORS

N. S. Manton

ABSTRACT

A Skyrmion may be regarded as a topologically non-trivial map from one Riemannian manifold to another, minimizing a particular energy functional. We discuss the geometrical interpretation of this energy functional and give examples of Skyrmions on various manifolds. We show how the existence of conformal transformations can cause a Skyrmion on a 3-sphere to become unstable, and how this may be related to chiral symmetry breaking. More... »

PAGES

469-478

References to SciGraph publications

  • 1986-12. A direct variational approach to Skyrme's model for meson fields in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1976-12. Some comments on the many-dimensional solitons in LETTERS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01238909

    DOI

    http://dx.doi.org/10.1007/bf01238909

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1038434499


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Cambridge", 
              "id": "https://www.grid.ac/institutes/grid.5335.0", 
              "name": [
                "St. John's College, CB2 1TP, Cambridge, United Kingdom", 
                "Department of Applied Mathematics and Theoretical Physics, CB3 9EW, Cambridge, United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Manton", 
            "givenName": "N. S.", 
            "id": "sg:person.01364115404.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364115404.39"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01238934", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014622544", 
              "https://doi.org/10.1007/bf01238934"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01238934", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014622544", 
              "https://doi.org/10.1007/bf01238934"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00398483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019198088", 
              "https://doi.org/10.1007/bf00398483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00398483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019198088", 
              "https://doi.org/10.1007/bf00398483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(86)91271-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036661429"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(86)91271-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036661429"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1961.0018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037916716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(83)90559-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044428697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(83)90559-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044428697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2373037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069899623"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1987-09", 
        "datePublishedReg": "1987-09-01", 
        "description": "A Skyrmion may be regarded as a topologically non-trivial map from one Riemannian manifold to another, minimizing a particular energy functional. We discuss the geometrical interpretation of this energy functional and give examples of Skyrmions on various manifolds. We show how the existence of conformal transformations can cause a Skyrmion on a 3-sphere to become unstable, and how this may be related to chiral symmetry breaking.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01238909", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "111"
          }
        ], 
        "name": "Geometry of Skyrmions", 
        "pagination": "469-478", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b715c48e0af41228160a2601f7716665602d75eaf9d77b55234fbbde3c88222d"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01238909"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1038434499"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01238909", 
          "https://app.dimensions.ai/details/publication/pub.1038434499"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46747_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01238909"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01238909'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01238909'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01238909'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01238909'


     

    This table displays all metadata directly associated to this object as RDF triples.

    82 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01238909 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N175587148b9c4dfb9fc6f36b86a739c3
    4 schema:citation sg:pub.10.1007/bf00398483
    5 sg:pub.10.1007/bf01238934
    6 https://doi.org/10.1016/0370-2693(86)91271-2
    7 https://doi.org/10.1016/0550-3213(83)90559-x
    8 https://doi.org/10.1098/rspa.1961.0018
    9 https://doi.org/10.2307/2373037
    10 schema:datePublished 1987-09
    11 schema:datePublishedReg 1987-09-01
    12 schema:description A Skyrmion may be regarded as a topologically non-trivial map from one Riemannian manifold to another, minimizing a particular energy functional. We discuss the geometrical interpretation of this energy functional and give examples of Skyrmions on various manifolds. We show how the existence of conformal transformations can cause a Skyrmion on a 3-sphere to become unstable, and how this may be related to chiral symmetry breaking.
    13 schema:genre research_article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf N4cb3499e1e524d75906f179a487bac71
    17 N9b67778d79624f8e88100bfb065a830b
    18 sg:journal.1136216
    19 schema:name Geometry of Skyrmions
    20 schema:pagination 469-478
    21 schema:productId N6927748fd6dd4a29a266968a7405f090
    22 N9dc3ea2edc7546efbabfd06fbc069d7b
    23 N9e524bdced0c4d1fac61521b7506cd15
    24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038434499
    25 https://doi.org/10.1007/bf01238909
    26 schema:sdDatePublished 2019-04-11T13:29
    27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    28 schema:sdPublisher Nd9d772b476d84fe994ef62dfdba89925
    29 schema:url http://link.springer.com/10.1007/BF01238909
    30 sgo:license sg:explorer/license/
    31 sgo:sdDataset articles
    32 rdf:type schema:ScholarlyArticle
    33 N175587148b9c4dfb9fc6f36b86a739c3 rdf:first sg:person.01364115404.39
    34 rdf:rest rdf:nil
    35 N4cb3499e1e524d75906f179a487bac71 schema:volumeNumber 111
    36 rdf:type schema:PublicationVolume
    37 N6927748fd6dd4a29a266968a7405f090 schema:name dimensions_id
    38 schema:value pub.1038434499
    39 rdf:type schema:PropertyValue
    40 N9b67778d79624f8e88100bfb065a830b schema:issueNumber 3
    41 rdf:type schema:PublicationIssue
    42 N9dc3ea2edc7546efbabfd06fbc069d7b schema:name doi
    43 schema:value 10.1007/bf01238909
    44 rdf:type schema:PropertyValue
    45 N9e524bdced0c4d1fac61521b7506cd15 schema:name readcube_id
    46 schema:value b715c48e0af41228160a2601f7716665602d75eaf9d77b55234fbbde3c88222d
    47 rdf:type schema:PropertyValue
    48 Nd9d772b476d84fe994ef62dfdba89925 schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    51 schema:name Mathematical Sciences
    52 rdf:type schema:DefinedTerm
    53 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    54 schema:name Pure Mathematics
    55 rdf:type schema:DefinedTerm
    56 sg:journal.1136216 schema:issn 0010-3616
    57 1432-0916
    58 schema:name Communications in Mathematical Physics
    59 rdf:type schema:Periodical
    60 sg:person.01364115404.39 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
    61 schema:familyName Manton
    62 schema:givenName N. S.
    63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364115404.39
    64 rdf:type schema:Person
    65 sg:pub.10.1007/bf00398483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019198088
    66 https://doi.org/10.1007/bf00398483
    67 rdf:type schema:CreativeWork
    68 sg:pub.10.1007/bf01238934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014622544
    69 https://doi.org/10.1007/bf01238934
    70 rdf:type schema:CreativeWork
    71 https://doi.org/10.1016/0370-2693(86)91271-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036661429
    72 rdf:type schema:CreativeWork
    73 https://doi.org/10.1016/0550-3213(83)90559-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044428697
    74 rdf:type schema:CreativeWork
    75 https://doi.org/10.1098/rspa.1961.0018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037916716
    76 rdf:type schema:CreativeWork
    77 https://doi.org/10.2307/2373037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069899623
    78 rdf:type schema:CreativeWork
    79 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
    80 schema:name Department of Applied Mathematics and Theoretical Physics, CB3 9EW, Cambridge, United Kingdom
    81 St. John's College, CB2 1TP, Cambridge, United Kingdom
    82 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...