Libration of Laplace's argument in the Galilean satellites theory View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1984-09

AUTHORS

J. Henrard

ABSTRACT

In the Galilean satellites motion, the Laplace argument λ13λ2+2λ3 librates around the value π. The amplitude of libration is very small so that the classical theories have not been set up to take into account large librations. On the other hand large librations have to be considered when we describe possible scenarii of capture into resonance by tidal effects. The aim of this paper is to present a new way of applying Hamiltonian perturbation methods to the problem of the Galilean satellites in such a way that the theory is valid for large librations. Preliminary results from such a theory are discussed. More... »

PAGES

255-262

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01235807

DOI

http://dx.doi.org/10.1007/bf01235807

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040982886


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Namur", 
          "id": "https://www.grid.ac/institutes/grid.6520.1", 
          "name": [
            "Department of Mathematics, Facult\u00e9s Univesitaires de Namur, B-5000, Namur, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Henrard", 
        "givenName": "J.", 
        "id": "sg:person.012411554565.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012411554565.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01234306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001324189", 
          "https://doi.org/10.1007/bf01234306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01234306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001324189", 
          "https://doi.org/10.1007/bf01234306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01228604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013507162", 
          "https://doi.org/10.1007/bf01228604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01228604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013507162", 
          "https://doi.org/10.1007/bf01228604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0019-1035(83)90020-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021974917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0019-1035(83)90020-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021974917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0019-1035(81)90088-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047641769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0019-1035(81)90088-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047641769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/279767a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050131686", 
          "https://doi.org/10.1038/279767a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/111999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058450578"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1984-09", 
    "datePublishedReg": "1984-09-01", 
    "description": "In the Galilean satellites motion, the Laplace argument \u03bb13\u03bb2+2\u03bb3 librates around the value \u03c0. The amplitude of libration is very small so that the classical theories have not been set up to take into account large librations. On the other hand large librations have to be considered when we describe possible scenarii of capture into resonance by tidal effects. The aim of this paper is to present a new way of applying Hamiltonian perturbation methods to the problem of the Galilean satellites in such a way that the theory is valid for large librations. Preliminary results from such a theory are discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01235807", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136436", 
        "issn": [
          "0008-8714", 
          "0923-2958"
        ], 
        "name": "Celestial Mechanics and Dynamical Astronomy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "34"
      }
    ], 
    "name": "Libration of Laplace's argument in the Galilean satellites theory", 
    "pagination": "255-262", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c33aca9473c7361c02983d3c629aa09b7ac2395569facc5d2dd9443c697d2397"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01235807"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040982886"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01235807", 
      "https://app.dimensions.ai/details/publication/pub.1040982886"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46760_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01235807"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01235807'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01235807'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01235807'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01235807'


 

This table displays all metadata directly associated to this object as RDF triples.

82 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01235807 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N9187926c89354f6fbf92376ed441469e
4 schema:citation sg:pub.10.1007/bf01228604
5 sg:pub.10.1007/bf01234306
6 sg:pub.10.1038/279767a0
7 https://doi.org/10.1016/0019-1035(81)90088-9
8 https://doi.org/10.1016/0019-1035(83)90020-9
9 https://doi.org/10.1086/111999
10 schema:datePublished 1984-09
11 schema:datePublishedReg 1984-09-01
12 schema:description In the Galilean satellites motion, the Laplace argument λ13λ2+2λ3 librates around the value π. The amplitude of libration is very small so that the classical theories have not been set up to take into account large librations. On the other hand large librations have to be considered when we describe possible scenarii of capture into resonance by tidal effects. The aim of this paper is to present a new way of applying Hamiltonian perturbation methods to the problem of the Galilean satellites in such a way that the theory is valid for large librations. Preliminary results from such a theory are discussed.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N30b16991fe7e4d588345a75e6fa29586
17 N48459c46dd074d6182557257a2f99c22
18 sg:journal.1136436
19 schema:name Libration of Laplace's argument in the Galilean satellites theory
20 schema:pagination 255-262
21 schema:productId N605b450bd4f54548ba30dd974d090bba
22 Nf41039fc11c14eddbc697b3a01613a49
23 Nfde107fcdce64d3ebb25ede2e078382a
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040982886
25 https://doi.org/10.1007/bf01235807
26 schema:sdDatePublished 2019-04-11T13:32
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N82de6ae0117a4c8e9e2e2ad549f2328a
29 schema:url http://link.springer.com/10.1007/BF01235807
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N30b16991fe7e4d588345a75e6fa29586 schema:volumeNumber 34
34 rdf:type schema:PublicationVolume
35 N48459c46dd074d6182557257a2f99c22 schema:issueNumber 1-4
36 rdf:type schema:PublicationIssue
37 N605b450bd4f54548ba30dd974d090bba schema:name dimensions_id
38 schema:value pub.1040982886
39 rdf:type schema:PropertyValue
40 N82de6ae0117a4c8e9e2e2ad549f2328a schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N9187926c89354f6fbf92376ed441469e rdf:first sg:person.012411554565.81
43 rdf:rest rdf:nil
44 Nf41039fc11c14eddbc697b3a01613a49 schema:name doi
45 schema:value 10.1007/bf01235807
46 rdf:type schema:PropertyValue
47 Nfde107fcdce64d3ebb25ede2e078382a schema:name readcube_id
48 schema:value c33aca9473c7361c02983d3c629aa09b7ac2395569facc5d2dd9443c697d2397
49 rdf:type schema:PropertyValue
50 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
51 schema:name Psychology and Cognitive Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
54 schema:name Psychology
55 rdf:type schema:DefinedTerm
56 sg:journal.1136436 schema:issn 0008-8714
57 0923-2958
58 schema:name Celestial Mechanics and Dynamical Astronomy
59 rdf:type schema:Periodical
60 sg:person.012411554565.81 schema:affiliation https://www.grid.ac/institutes/grid.6520.1
61 schema:familyName Henrard
62 schema:givenName J.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012411554565.81
64 rdf:type schema:Person
65 sg:pub.10.1007/bf01228604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013507162
66 https://doi.org/10.1007/bf01228604
67 rdf:type schema:CreativeWork
68 sg:pub.10.1007/bf01234306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001324189
69 https://doi.org/10.1007/bf01234306
70 rdf:type schema:CreativeWork
71 sg:pub.10.1038/279767a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050131686
72 https://doi.org/10.1038/279767a0
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1016/0019-1035(81)90088-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047641769
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1016/0019-1035(83)90020-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021974917
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1086/111999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058450578
79 rdf:type schema:CreativeWork
80 https://www.grid.ac/institutes/grid.6520.1 schema:alternateName University of Namur
81 schema:name Department of Mathematics, Facultés Univesitaires de Namur, B-5000, Namur, Belgium
82 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...