Kazhdan-Lusztig polynomials and canonical basis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1998-12

AUTHORS

I. B. Frenkel, M. G. Khovanov, A. A. Kirillov

ABSTRACT

In this paper we show that the Kazhdan-Lusztig polynomials (and, more generally, parabolic KL polynomials) for the groupSn coincide with the coefficients of the canonical basis innth tensor power of the fundamental representation of the quantum groupUqk. We also use known results about canonical bases forUq2 to get a new proof of recurrent formulas for KL polynomials for maximal parabolic subgroups (geometrically, this case corresponds to Grassmannians), due to Lascoux-Schützenberger and Zelevinsky. More... »

PAGES

321-336

References to SciGraph publications

  • 1979-06. Representations of Coxeter groups and Hecke algebras in INVENTIONES MATHEMATICAE
  • 1986-04. A q-analogue of U(g[(N+1)), Hecke algebra, and the Yang-Baxter equation in LETTERS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01234531

    DOI

    http://dx.doi.org/10.1007/bf01234531

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1050464897


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Yale University", 
              "id": "https://www.grid.ac/institutes/grid.47100.32", 
              "name": [
                "Department of Mathematics, Yale University, 06520-8283, New Haven, CT, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Frenkel", 
            "givenName": "I. B.", 
            "id": "sg:person.010744150565.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010744150565.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Advanced Study", 
              "id": "https://www.grid.ac/institutes/grid.78989.37", 
              "name": [
                "School of Mathematics, Institute for Advanced Study, 08540, Princeton, NJ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Khovanov", 
            "givenName": "M. G.", 
            "id": "sg:person.01360270230.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360270230.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Massachusetts Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Department of Mathematics, MIT, Rm. 2-179, 02139, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kirillov", 
            "givenName": "A. A.", 
            "id": "sg:person.010223771726.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010223771726.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00400222", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005564454", 
              "https://doi.org/10.1007/bf00400222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00400222", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005564454", 
              "https://doi.org/10.1007/bf00400222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01390031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029855172", 
              "https://doi.org/10.1007/bf01390031"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0021-8693(87)90232-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035680491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/s0012-7094-97-08715-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064420298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/pspum/036/573434", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089196420"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/conm/139/1197834", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1089207222"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1998-12", 
        "datePublishedReg": "1998-12-01", 
        "description": "In this paper we show that the Kazhdan-Lusztig polynomials (and, more generally, parabolic KL polynomials) for the groupSn coincide with the coefficients of the canonical basis innth tensor power of the fundamental representation of the quantum groupUqk. We also use known results about canonical bases forUq2 to get a new proof of recurrent formulas for KL polynomials for maximal parabolic subgroups (geometrically, this case corresponds to Grassmannians), due to Lascoux-Sch\u00fctzenberger and Zelevinsky.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01234531", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136210", 
            "issn": [
              "1083-4362", 
              "1531-586X"
            ], 
            "name": "Transformation Groups", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "name": "Kazhdan-Lusztig polynomials and canonical basis", 
        "pagination": "321-336", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f065d877726216cf04f9bbe78759fb17b75e8be8c29742cd9ff7987b7fcaa8a8"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01234531"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1050464897"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01234531", 
          "https://app.dimensions.ai/details/publication/pub.1050464897"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46775_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01234531"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01234531'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01234531'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01234531'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01234531'


     

    This table displays all metadata directly associated to this object as RDF triples.

    101 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01234531 schema:about anzsrc-for:02
    2 anzsrc-for:0206
    3 schema:author N7c48453bbbe04b739a27781b3c979c46
    4 schema:citation sg:pub.10.1007/bf00400222
    5 sg:pub.10.1007/bf01390031
    6 https://doi.org/10.1016/0021-8693(87)90232-8
    7 https://doi.org/10.1090/conm/139/1197834
    8 https://doi.org/10.1090/pspum/036/573434
    9 https://doi.org/10.1215/s0012-7094-97-08715-9
    10 schema:datePublished 1998-12
    11 schema:datePublishedReg 1998-12-01
    12 schema:description In this paper we show that the Kazhdan-Lusztig polynomials (and, more generally, parabolic KL polynomials) for the groupSn coincide with the coefficients of the canonical basis innth tensor power of the fundamental representation of the quantum groupUqk. We also use known results about canonical bases forUq2 to get a new proof of recurrent formulas for KL polynomials for maximal parabolic subgroups (geometrically, this case corresponds to Grassmannians), due to Lascoux-Schützenberger and Zelevinsky.
    13 schema:genre research_article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree true
    16 schema:isPartOf N59a3968d11a14608ab1576739ab7e2aa
    17 Nd5c559c8a7d84cd095dc61024708639e
    18 sg:journal.1136210
    19 schema:name Kazhdan-Lusztig polynomials and canonical basis
    20 schema:pagination 321-336
    21 schema:productId N1271be69860f4db8a06fc8066dbe0757
    22 N7e368922ed5a4f73ba235ded9e2fed02
    23 Ne6f40d6ddc594843b43e67ff339f599a
    24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050464897
    25 https://doi.org/10.1007/bf01234531
    26 schema:sdDatePublished 2019-04-11T13:35
    27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    28 schema:sdPublisher N3d6e818512c64f2191c3be71bb303af5
    29 schema:url http://link.springer.com/10.1007/BF01234531
    30 sgo:license sg:explorer/license/
    31 sgo:sdDataset articles
    32 rdf:type schema:ScholarlyArticle
    33 N1271be69860f4db8a06fc8066dbe0757 schema:name doi
    34 schema:value 10.1007/bf01234531
    35 rdf:type schema:PropertyValue
    36 N132055a63c8b4ce38d309865aa740bb8 rdf:first sg:person.010223771726.10
    37 rdf:rest rdf:nil
    38 N2d3d5c613bbe4cf1b3056ca669e100b3 rdf:first sg:person.01360270230.42
    39 rdf:rest N132055a63c8b4ce38d309865aa740bb8
    40 N3d6e818512c64f2191c3be71bb303af5 schema:name Springer Nature - SN SciGraph project
    41 rdf:type schema:Organization
    42 N59a3968d11a14608ab1576739ab7e2aa schema:volumeNumber 3
    43 rdf:type schema:PublicationVolume
    44 N7c48453bbbe04b739a27781b3c979c46 rdf:first sg:person.010744150565.52
    45 rdf:rest N2d3d5c613bbe4cf1b3056ca669e100b3
    46 N7e368922ed5a4f73ba235ded9e2fed02 schema:name dimensions_id
    47 schema:value pub.1050464897
    48 rdf:type schema:PropertyValue
    49 Nd5c559c8a7d84cd095dc61024708639e schema:issueNumber 4
    50 rdf:type schema:PublicationIssue
    51 Ne6f40d6ddc594843b43e67ff339f599a schema:name readcube_id
    52 schema:value f065d877726216cf04f9bbe78759fb17b75e8be8c29742cd9ff7987b7fcaa8a8
    53 rdf:type schema:PropertyValue
    54 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    55 schema:name Physical Sciences
    56 rdf:type schema:DefinedTerm
    57 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Quantum Physics
    59 rdf:type schema:DefinedTerm
    60 sg:journal.1136210 schema:issn 1083-4362
    61 1531-586X
    62 schema:name Transformation Groups
    63 rdf:type schema:Periodical
    64 sg:person.010223771726.10 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
    65 schema:familyName Kirillov
    66 schema:givenName A. A.
    67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010223771726.10
    68 rdf:type schema:Person
    69 sg:person.010744150565.52 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
    70 schema:familyName Frenkel
    71 schema:givenName I. B.
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010744150565.52
    73 rdf:type schema:Person
    74 sg:person.01360270230.42 schema:affiliation https://www.grid.ac/institutes/grid.78989.37
    75 schema:familyName Khovanov
    76 schema:givenName M. G.
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360270230.42
    78 rdf:type schema:Person
    79 sg:pub.10.1007/bf00400222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005564454
    80 https://doi.org/10.1007/bf00400222
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1007/bf01390031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029855172
    83 https://doi.org/10.1007/bf01390031
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1016/0021-8693(87)90232-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035680491
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1090/conm/139/1197834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089207222
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1090/pspum/036/573434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089196420
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1215/s0012-7094-97-08715-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064420298
    92 rdf:type schema:CreativeWork
    93 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
    94 schema:name Department of Mathematics, MIT, Rm. 2-179, 02139, Cambridge, MA, USA
    95 rdf:type schema:Organization
    96 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
    97 schema:name Department of Mathematics, Yale University, 06520-8283, New Haven, CT, USA
    98 rdf:type schema:Organization
    99 https://www.grid.ac/institutes/grid.78989.37 schema:alternateName Institute for Advanced Study
    100 schema:name School of Mathematics, Institute for Advanced Study, 08540, Princeton, NJ, USA
    101 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...