Elimination of the nodes in problems ofn bodies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1983-06

AUTHORS

André Deprit

ABSTRACT

In application of the Reduction Theorem to the general problem ofn (>-3) bodies, a Mathieu canonical transformation is proposed whereby the new variables separate naturally into (i) a coordinate system on any reduced manifold of constant angular momentum, and (ii) a quadruple made of a pair of ignorable longitudes together with their conjugate momenta. The reduction is built from a binary tree of kinetic frames Explicit transformation formulas are obtained by induction from the top of the tree down to its root at the invariable frame; they are based on the unit quaternions which represent the finite rotations mapping one vector base onto another in the chain of kinetic frames. The development scheme lends itself to automatic processing by computer in a functional language. More... »

PAGES

181-195

References to SciGraph publications

  • 1982-08. Elimination des noeuds dans le probleme newtonien des quatre corps in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01234305

    DOI

    http://dx.doi.org/10.1007/bf01234305

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1047310995


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Bureau of Standards, DC 20234, Washington, USA", 
              "id": "http://www.grid.ac/institutes/grid.94225.38", 
              "name": [
                "National Bureau of Standards, DC 20234, Washington, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Deprit", 
            "givenName": "Andr\u00e9", 
            "id": "sg:person.011500421302.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011500421302.45"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01228562", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050473829", 
              "https://doi.org/10.1007/bf01228562"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1983-06", 
        "datePublishedReg": "1983-06-01", 
        "description": "In application of the Reduction Theorem to the general problem ofn (>-3) bodies, a Mathieu canonical transformation is proposed whereby the new variables separate naturally into (i) a coordinate system on any reduced manifold of constant angular momentum, and (ii) a quadruple made of a pair of ignorable longitudes together with their conjugate momenta. The reduction is built from a binary tree of kinetic frames Explicit transformation formulas are obtained by induction from the top of the tree down to its root at the invariable frame; they are based on the unit quaternions which represent the finite rotations mapping one vector base onto another in the chain of kinetic frames. The development scheme lends itself to automatic processing by computer in a functional language.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01234305", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136436", 
            "issn": [
              "0008-8714", 
              "0923-2958"
            ], 
            "name": "Celestial Mechanics and Dynamical Astronomy", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "30"
          }
        ], 
        "keywords": [
          "finite rotations", 
          "coordinate system", 
          "vector base", 
          "unit quaternions", 
          "constant angular momentum", 
          "momentum", 
          "kinetic frame", 
          "processing", 
          "top", 
          "automatic processing", 
          "applications", 
          "frame", 
          "quaternions", 
          "angular momentum", 
          "development schemes", 
          "system", 
          "new variables", 
          "rotation", 
          "scheme", 
          "reduction", 
          "body", 
          "general problem", 
          "problem", 
          "transformation", 
          "longitude", 
          "formula", 
          "base", 
          "computer", 
          "transformation formula", 
          "variables", 
          "manifold", 
          "elimination", 
          "nodes", 
          "pairs", 
          "chain", 
          "conjugate momenta", 
          "quadruple", 
          "roots", 
          "theorem", 
          "canonical transformation", 
          "trees", 
          "binary tree", 
          "induction", 
          "language", 
          "reduction theorem", 
          "reduced manifold", 
          "functional language", 
          "Mathieu canonical transformation", 
          "ignorable longitudes", 
          "kinetic frames Explicit transformation formulas", 
          "frames Explicit transformation formulas", 
          "Explicit transformation formulas", 
          "invariable frame", 
          "problems ofn bodies", 
          "ofn bodies"
        ], 
        "name": "Elimination of the nodes in problems ofn bodies", 
        "pagination": "181-195", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1047310995"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01234305"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01234305", 
          "https://app.dimensions.ai/details/publication/pub.1047310995"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T17:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_153.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01234305"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01234305'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01234305'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01234305'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01234305'


     

    This table displays all metadata directly associated to this object as RDF triples.

    117 TRIPLES      22 PREDICATES      82 URIs      73 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01234305 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author Nb18de7ef0e0a4cf4a826c7647ec19987
    4 schema:citation sg:pub.10.1007/bf01228562
    5 schema:datePublished 1983-06
    6 schema:datePublishedReg 1983-06-01
    7 schema:description In application of the Reduction Theorem to the general problem ofn (>-3) bodies, a Mathieu canonical transformation is proposed whereby the new variables separate naturally into (i) a coordinate system on any reduced manifold of constant angular momentum, and (ii) a quadruple made of a pair of ignorable longitudes together with their conjugate momenta. The reduction is built from a binary tree of kinetic frames Explicit transformation formulas are obtained by induction from the top of the tree down to its root at the invariable frame; they are based on the unit quaternions which represent the finite rotations mapping one vector base onto another in the chain of kinetic frames. The development scheme lends itself to automatic processing by computer in a functional language.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf Nc99414bd1a49467886897d14c127e03a
    12 Nca32a2b81a9542ddab9e8c1c4939fa42
    13 sg:journal.1136436
    14 schema:keywords Explicit transformation formulas
    15 Mathieu canonical transformation
    16 angular momentum
    17 applications
    18 automatic processing
    19 base
    20 binary tree
    21 body
    22 canonical transformation
    23 chain
    24 computer
    25 conjugate momenta
    26 constant angular momentum
    27 coordinate system
    28 development schemes
    29 elimination
    30 finite rotations
    31 formula
    32 frame
    33 frames Explicit transformation formulas
    34 functional language
    35 general problem
    36 ignorable longitudes
    37 induction
    38 invariable frame
    39 kinetic frame
    40 kinetic frames Explicit transformation formulas
    41 language
    42 longitude
    43 manifold
    44 momentum
    45 new variables
    46 nodes
    47 ofn bodies
    48 pairs
    49 problem
    50 problems ofn bodies
    51 processing
    52 quadruple
    53 quaternions
    54 reduced manifold
    55 reduction
    56 reduction theorem
    57 roots
    58 rotation
    59 scheme
    60 system
    61 theorem
    62 top
    63 transformation
    64 transformation formula
    65 trees
    66 unit quaternions
    67 variables
    68 vector base
    69 schema:name Elimination of the nodes in problems ofn bodies
    70 schema:pagination 181-195
    71 schema:productId N81da09656839450598c7d35212f3352c
    72 Nd10014af6c6d42ea8b07a65d52ee4a52
    73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047310995
    74 https://doi.org/10.1007/bf01234305
    75 schema:sdDatePublished 2021-11-01T17:55
    76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    77 schema:sdPublisher Nd78310869eed449d913fb343413c60b3
    78 schema:url https://doi.org/10.1007/bf01234305
    79 sgo:license sg:explorer/license/
    80 sgo:sdDataset articles
    81 rdf:type schema:ScholarlyArticle
    82 N81da09656839450598c7d35212f3352c schema:name doi
    83 schema:value 10.1007/bf01234305
    84 rdf:type schema:PropertyValue
    85 Nb18de7ef0e0a4cf4a826c7647ec19987 rdf:first sg:person.011500421302.45
    86 rdf:rest rdf:nil
    87 Nc99414bd1a49467886897d14c127e03a schema:volumeNumber 30
    88 rdf:type schema:PublicationVolume
    89 Nca32a2b81a9542ddab9e8c1c4939fa42 schema:issueNumber 2
    90 rdf:type schema:PublicationIssue
    91 Nd10014af6c6d42ea8b07a65d52ee4a52 schema:name dimensions_id
    92 schema:value pub.1047310995
    93 rdf:type schema:PropertyValue
    94 Nd78310869eed449d913fb343413c60b3 schema:name Springer Nature - SN SciGraph project
    95 rdf:type schema:Organization
    96 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Mathematical Sciences
    98 rdf:type schema:DefinedTerm
    99 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Applied Mathematics
    101 rdf:type schema:DefinedTerm
    102 sg:journal.1136436 schema:issn 0008-8714
    103 0923-2958
    104 schema:name Celestial Mechanics and Dynamical Astronomy
    105 schema:publisher Springer Nature
    106 rdf:type schema:Periodical
    107 sg:person.011500421302.45 schema:affiliation grid-institutes:grid.94225.38
    108 schema:familyName Deprit
    109 schema:givenName André
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011500421302.45
    111 rdf:type schema:Person
    112 sg:pub.10.1007/bf01228562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050473829
    113 https://doi.org/10.1007/bf01228562
    114 rdf:type schema:CreativeWork
    115 grid-institutes:grid.94225.38 schema:alternateName National Bureau of Standards, DC 20234, Washington, USA
    116 schema:name National Bureau of Standards, DC 20234, Washington, USA
    117 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...