Hepatic gene therapy: Efficient retroviral-mediated gene transfer into rat hepatocytes in vivo View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-09

AUTHORS

Tadeusz M. Kolodka, Milton Finegold, Savio L. C. Woo

ABSTRACT

The rat is an excellent model for gene therapy because there are many rat models for human diseases. We have developed a simple and efficient method to deliver genes to the rat liver using recombinant retroviral vectors. A 70% partial hepatectomy followed by retroviral infusion into the portal vein results in 10–15% hepatocyte transduction in vivo. This is 10 times more efficient than in the mouse due partially to the observation that the rat livers have much more synchronous hepatocyte replication after partial hepatectomy. Using a recombinant retroviral vector containing the human α1-antitrypsin cDNA, persistent expression of the human protein in recipient rat plasma was observed for at least six months and at a level that is 10 times greater than the mouse. Thus, rats can serve as an excellent model for gene therapy of metabolic disorders secondary to hepatic deficiencies. More... »

PAGES

491-497

Journal

TITLE

Somatic Cell and Molecular Genetics

ISSUE

5

VOLUME

19

Related Patents

  • Vascular Endothelial Growth Factor 2 Specific Immunoglobulin For Use In Diagnosis, Prevention And Treatment Of Tumors, Peripheral Artery And Coronary Disease
  • By Injecting The Polynucleotide Into A Blood Vessel Connected To The Parenchymal Cell In Tissue Or Organ Of The Mammal Such That The Polynucleotide Is Transfected Into The Parenchymal Cell And Functionally Expressed To Therapeutic Levels.
  • Antibodies Against Such Vegfs, Which May Be Used To Inhibit Their Action, For Example, To Inhibit The Growth Of Tumors, To Treat Diabetic Retinopathy, Rheumatoid Arthritis And Psoriasis
  • Mixture Comprising Tri-Iodothyronine (T3) And Keratinocyte Growth Factor (Kgf) In A Pharmaceutically Acceptable Carrier Administered In A Dosage To Induce In Vivo A Semi-Synchronous Wave Of Liver Cell Proliferation
  • Inhibiting Tumor Growth, Inflammation, Diabetic Retinopathy, Rheumatoid Arthritis And Psoriasis; Diagnostic Methods For Detecting Mutations In The Vegf2 Coding Sequence And Alterations In The Concentration Of Vegf2 Protein
  • Vascular Endothelial Growth Factor 2
  • Polynucleotide Encoding It, As Well As Agonists And Antagonists; Drug Screening; Use As Wound Healing Agent; Antagonists As Antitumor Agents; Transformed Host Cells
  • Administering A Polypeptide Attached To A Water Soluble Polymer; Treating Age-Related Macular Degeneration, Diabetic Retinopathy, Peripheral Vitreoretinopathies, Photic Retinopathies, Surgery-Induced Retinopathies, Viral Retinopathies, Ischemlc Retinopathies, Retinal Detachment And Traumatic Retinopathy
  • Comprises Nucleotide Sequences Coding Cell Growth Factors For Use In Developing Modulators For Treatment Of Cell Proliferative, Arthritic, Skin And Vision Defects; Immunotherapy
  • Human Vascular Endothelial Growth Factor 2
  • Vascular Endothelial Growth Factor 2
  • Vascular Endothelial Growth Factor 2
  • Vascular Endothelial Growth Factor 2
  • Isolated Polypeptide Of Given Amino Acid Sequence; Can Use For Stimulating Angiogenesis, Wound Healing And Vascular Tissue Repair; Antagonists Can Be Used To Inhibit The Growth Of Tumors, Treat Diabetic Retinopathy, Inflammation
  • Vascular Endothelial Growth Factor 2
  • Methods Of Treating An Injury To, Or Disorder Of, The Eye Involving Photoreceptor Proliferation By Administering Vegf2 Antibodies
  • Vascular Endothelial Growth Factor 2
  • Methods For Administration Of Recombinant Gene Delivery Vehicles For Treatment Of Hemophilia And Other Disorders
  • Vascular Endothelial Growth Factor 2
  • Combinations And Methods For Promoting In Vivo Liver Cell Proliferation And Enhancing In Vivo Liver-Directed Gene Transduction
  • Vascular Endothelial Growth Factor 2 Proteins And Compositions
  • Comprises Nucleotide Sequences Associated With Expression Vector Coding Endothelial Growth Factor For Use In Diagnosis And Treatment Of Tumor Angiogenesis, Inflammation, Diabetic Retinopathy, Arthritis And Psoriasis; Wound Healing Agent
  • Antibodies To Vascular Endothelial Growth Factor 2 (Vegf-2)
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01233254

    DOI

    http://dx.doi.org/10.1007/bf01233254

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1028301736

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/7980740


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Technology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1004", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical Biotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Recombinant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Transfer Techniques", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Therapy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Vectors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Hepatectomy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Infusions, Intravenous", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Liver", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Rats", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retroviridae", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "alpha 1-Antitrypsin", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Cell Biology, Baylor College of Medicine, 77030, Houston, Texas", 
              "id": "http://www.grid.ac/institutes/grid.39382.33", 
              "name": [
                "Department of Cell Biology, Baylor College of Medicine, 77030, Houston, Texas"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kolodka", 
            "givenName": "Tadeusz M.", 
            "id": "sg:person.0633656320.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633656320.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Pathology, Baylor College of Medicine, 77030, Houston, Texas", 
              "id": "http://www.grid.ac/institutes/grid.39382.33", 
              "name": [
                "Department of Pathology, Baylor College of Medicine, 77030, Houston, Texas"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Finegold", 
            "givenName": "Milton", 
            "id": "sg:person.014103516477.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014103516477.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Howard Hughes Medical Institute, Baylor College of Medicine, 77030, Houston, Texas", 
              "id": "http://www.grid.ac/institutes/grid.39382.33", 
              "name": [
                "Department of Cell Biology, Baylor College of Medicine, 77030, Houston, Texas", 
                "Department of Molecular Genetics, Baylor College of Medicine, 77030, Houston, Texas", 
                "Howard Hughes Medical Institute, Baylor College of Medicine, 77030, Houston, Texas"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Woo", 
            "givenName": "Savio L. C.", 
            "id": "sg:person.013131317422.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013131317422.28"
            ], 
            "type": "Person"
          }
        ], 
        "datePublished": "1993-09", 
        "datePublishedReg": "1993-09-01", 
        "description": "The rat is an excellent model for gene therapy because there are many rat models for human diseases. We have developed a simple and efficient method to deliver genes to the rat liver using recombinant retroviral vectors. A 70% partial hepatectomy followed by retroviral infusion into the portal vein results in 10\u201315% hepatocyte transduction in vivo. This is 10 times more efficient than in the mouse due partially to the observation that the rat livers have much more synchronous hepatocyte replication after partial hepatectomy. Using a recombinant retroviral vector containing the human \u03b11-antitrypsin cDNA, persistent expression of the human protein in recipient rat plasma was observed for at least six months and at a level that is 10 times greater than the mouse. Thus, rats can serve as an excellent model for gene therapy of metabolic disorders secondary to hepatic deficiencies.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01233254", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2532887", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1094443", 
            "issn": [
              "0740-7750", 
              "1572-9931"
            ], 
            "name": "Somatic Cell and Molecular Genetics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "19"
          }
        ], 
        "keywords": [
          "recombinant retroviral vector", 
          "gene therapy", 
          "retroviral vectors", 
          "efficient retroviral-mediated gene transfer", 
          "retroviral-mediated gene transfer", 
          "hepatocyte transduction", 
          "gene transfer", 
          "hepatic deficiency", 
          "efficient method", 
          "hepatocyte replication", 
          "persistent expression", 
          "vector", 
          "human proteins", 
          "vivo", 
          "cDNA", 
          "human diseases", 
          "transfer", 
          "transduction", 
          "time", 
          "method", 
          "rat plasma", 
          "rat liver", 
          "plasma", 
          "genes", 
          "protein", 
          "therapy", 
          "rat hepatocytes", 
          "hepatocytes", 
          "excellent model", 
          "mice", 
          "expression", 
          "replication", 
          "model", 
          "metabolic disorders", 
          "partial hepatectomy", 
          "liver", 
          "levels", 
          "observations", 
          "rat model", 
          "deficiency", 
          "disease", 
          "rats", 
          "disorders", 
          "portal vein", 
          "hepatectomy", 
          "vein", 
          "months", 
          "infusion"
        ], 
        "name": "Hepatic gene therapy: Efficient retroviral-mediated gene transfer into rat hepatocytes in vivo", 
        "pagination": "491-497", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1028301736"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01233254"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "7980740"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01233254", 
          "https://app.dimensions.ai/details/publication/pub.1028301736"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_216.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01233254"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01233254'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01233254'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01233254'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01233254'


     

    This table displays all metadata directly associated to this object as RDF triples.

    178 TRIPLES      20 PREDICATES      86 URIs      78 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01233254 schema:about N159c1fe8eb6f42a58a0acf29305fdb76
    2 N189b6e87ad5d400fb900ff2516685573
    3 N2ce59995965d4bfb905a0c81f3ca32da
    4 N46cefd7bedb14adda929bc440213aee3
    5 N7a62c36aea024e1a99c97b9b32746216
    6 N8354a88cf1e44cbd9f011792c65b4aad
    7 Na180ee1f261141eeb406b229a5277706
    8 Nb1ffe7bb0d2143c5913f7f97fa6faf44
    9 Nbb4373aab9e74296894cea87a0df91b3
    10 Nced7d21eefaa4810a4843ed238405df0
    11 Ndb116b58c8c44f11af46f3f5c5a95629
    12 Nfcb0ea8f07ac41bcaf1eb77a072c0847
    13 anzsrc-for:10
    14 anzsrc-for:1004
    15 schema:author N512a124ea1cc4364864da8e64e36b69d
    16 schema:datePublished 1993-09
    17 schema:datePublishedReg 1993-09-01
    18 schema:description The rat is an excellent model for gene therapy because there are many rat models for human diseases. We have developed a simple and efficient method to deliver genes to the rat liver using recombinant retroviral vectors. A 70% partial hepatectomy followed by retroviral infusion into the portal vein results in 10–15% hepatocyte transduction in vivo. This is 10 times more efficient than in the mouse due partially to the observation that the rat livers have much more synchronous hepatocyte replication after partial hepatectomy. Using a recombinant retroviral vector containing the human α1-antitrypsin cDNA, persistent expression of the human protein in recipient rat plasma was observed for at least six months and at a level that is 10 times greater than the mouse. Thus, rats can serve as an excellent model for gene therapy of metabolic disorders secondary to hepatic deficiencies.
    19 schema:genre article
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N2dc4446137564023a243f3a0c66d14a7
    22 N330d481a6ba9436e8c92deca3151421c
    23 sg:journal.1094443
    24 schema:keywords cDNA
    25 deficiency
    26 disease
    27 disorders
    28 efficient method
    29 efficient retroviral-mediated gene transfer
    30 excellent model
    31 expression
    32 gene therapy
    33 gene transfer
    34 genes
    35 hepatectomy
    36 hepatic deficiency
    37 hepatocyte replication
    38 hepatocyte transduction
    39 hepatocytes
    40 human diseases
    41 human proteins
    42 infusion
    43 levels
    44 liver
    45 metabolic disorders
    46 method
    47 mice
    48 model
    49 months
    50 observations
    51 partial hepatectomy
    52 persistent expression
    53 plasma
    54 portal vein
    55 protein
    56 rat hepatocytes
    57 rat liver
    58 rat model
    59 rat plasma
    60 rats
    61 recombinant retroviral vector
    62 replication
    63 retroviral vectors
    64 retroviral-mediated gene transfer
    65 therapy
    66 time
    67 transduction
    68 transfer
    69 vector
    70 vein
    71 vivo
    72 schema:name Hepatic gene therapy: Efficient retroviral-mediated gene transfer into rat hepatocytes in vivo
    73 schema:pagination 491-497
    74 schema:productId Nb852ae7872ee4d4d80cfbd5c5a7bfddf
    75 Nd3418aea2b7647d8a91790230bc6d537
    76 Nea98ccfd83834546ad54f9de984ae3df
    77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028301736
    78 https://doi.org/10.1007/bf01233254
    79 schema:sdDatePublished 2022-12-01T06:19
    80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    81 schema:sdPublisher N1d25a91d28fd4ca98b6d1f9551958e4b
    82 schema:url https://doi.org/10.1007/bf01233254
    83 sgo:license sg:explorer/license/
    84 sgo:sdDataset articles
    85 rdf:type schema:ScholarlyArticle
    86 N159c1fe8eb6f42a58a0acf29305fdb76 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    87 schema:name Retroviridae
    88 rdf:type schema:DefinedTerm
    89 N189b6e87ad5d400fb900ff2516685573 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    90 schema:name Hepatectomy
    91 rdf:type schema:DefinedTerm
    92 N1d25a91d28fd4ca98b6d1f9551958e4b schema:name Springer Nature - SN SciGraph project
    93 rdf:type schema:Organization
    94 N2ce59995965d4bfb905a0c81f3ca32da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Rats
    96 rdf:type schema:DefinedTerm
    97 N2dc4446137564023a243f3a0c66d14a7 schema:volumeNumber 19
    98 rdf:type schema:PublicationVolume
    99 N330d481a6ba9436e8c92deca3151421c schema:issueNumber 5
    100 rdf:type schema:PublicationIssue
    101 N46cefd7bedb14adda929bc440213aee3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    102 schema:name Gene Transfer Techniques
    103 rdf:type schema:DefinedTerm
    104 N512a124ea1cc4364864da8e64e36b69d rdf:first sg:person.0633656320.95
    105 rdf:rest N90b5a28741b8453e9aadd54e4fcec9c2
    106 N7a62c36aea024e1a99c97b9b32746216 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Liver
    108 rdf:type schema:DefinedTerm
    109 N7c967c0b1c0e4fdf97cd0f1f4c48e5b6 rdf:first sg:person.013131317422.28
    110 rdf:rest rdf:nil
    111 N8354a88cf1e44cbd9f011792c65b4aad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name alpha 1-Antitrypsin
    113 rdf:type schema:DefinedTerm
    114 N90b5a28741b8453e9aadd54e4fcec9c2 rdf:first sg:person.014103516477.24
    115 rdf:rest N7c967c0b1c0e4fdf97cd0f1f4c48e5b6
    116 Na180ee1f261141eeb406b229a5277706 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Genetic Vectors
    118 rdf:type schema:DefinedTerm
    119 Nb1ffe7bb0d2143c5913f7f97fa6faf44 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Male
    121 rdf:type schema:DefinedTerm
    122 Nb852ae7872ee4d4d80cfbd5c5a7bfddf schema:name doi
    123 schema:value 10.1007/bf01233254
    124 rdf:type schema:PropertyValue
    125 Nbb4373aab9e74296894cea87a0df91b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name DNA, Recombinant
    127 rdf:type schema:DefinedTerm
    128 Nced7d21eefaa4810a4843ed238405df0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Animals
    130 rdf:type schema:DefinedTerm
    131 Nd3418aea2b7647d8a91790230bc6d537 schema:name dimensions_id
    132 schema:value pub.1028301736
    133 rdf:type schema:PropertyValue
    134 Ndb116b58c8c44f11af46f3f5c5a95629 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Infusions, Intravenous
    136 rdf:type schema:DefinedTerm
    137 Nea98ccfd83834546ad54f9de984ae3df schema:name pubmed_id
    138 schema:value 7980740
    139 rdf:type schema:PropertyValue
    140 Nfcb0ea8f07ac41bcaf1eb77a072c0847 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Genetic Therapy
    142 rdf:type schema:DefinedTerm
    143 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
    144 schema:name Technology
    145 rdf:type schema:DefinedTerm
    146 anzsrc-for:1004 schema:inDefinedTermSet anzsrc-for:
    147 schema:name Medical Biotechnology
    148 rdf:type schema:DefinedTerm
    149 sg:grant.2532887 http://pending.schema.org/fundedItem sg:pub.10.1007/bf01233254
    150 rdf:type schema:MonetaryGrant
    151 sg:journal.1094443 schema:issn 0740-7750
    152 1572-9931
    153 schema:name Somatic Cell and Molecular Genetics
    154 schema:publisher Springer Nature
    155 rdf:type schema:Periodical
    156 sg:person.013131317422.28 schema:affiliation grid-institutes:grid.39382.33
    157 schema:familyName Woo
    158 schema:givenName Savio L. C.
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013131317422.28
    160 rdf:type schema:Person
    161 sg:person.014103516477.24 schema:affiliation grid-institutes:grid.39382.33
    162 schema:familyName Finegold
    163 schema:givenName Milton
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014103516477.24
    165 rdf:type schema:Person
    166 sg:person.0633656320.95 schema:affiliation grid-institutes:grid.39382.33
    167 schema:familyName Kolodka
    168 schema:givenName Tadeusz M.
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633656320.95
    170 rdf:type schema:Person
    171 grid-institutes:grid.39382.33 schema:alternateName Department of Cell Biology, Baylor College of Medicine, 77030, Houston, Texas
    172 Department of Pathology, Baylor College of Medicine, 77030, Houston, Texas
    173 Howard Hughes Medical Institute, Baylor College of Medicine, 77030, Houston, Texas
    174 schema:name Department of Cell Biology, Baylor College of Medicine, 77030, Houston, Texas
    175 Department of Molecular Genetics, Baylor College of Medicine, 77030, Houston, Texas
    176 Department of Pathology, Baylor College of Medicine, 77030, Houston, Texas
    177 Howard Hughes Medical Institute, Baylor College of Medicine, 77030, Houston, Texas
    178 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...