Time regularization of an Adams-Moulton-Cowell algorithm View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1977-11

AUTHORS

N. Borderies

ABSTRACT

This paper deals with the Adams-Moulton-Cowell multistep integrator, as described by Oestwinter and Cohen (1972). In order to evaluate the accuracy of the method, we started to test it in the case of the unperturbed two-body motion; numerical instability may arise by integrating first order systems. The accuracy is improved by applying a Sundmann transformation of the independent variable. The algorithm is then modified such that the equations of pure keplerian motion are integrated with respect to the new independent variable without truncation error; numerical experiments show the considerable improvement of accuracy and the reduction of computing time for Keplerian motion.If terms of the disturbing function of the Earth are added to the central potential, the time-transformation is less effective. With a modification of this time-transformation as given by Moynot in 1971, it is possible to reduce the propagation of the truncation error in the J2 problem. More... »

PAGES

291-308

References to SciGraph publications

  • 1974-12. Notions of analytic vs numerical stability as applied to the numerical calculation of orbits in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1966-04. Asymptotic upper and lower bounds for results of extrapolation methods in NUMERISCHE MATHEMATIK
  • 1972-05. New orbital elements for Moon and planets in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1969-05. Stabilization of Cowell's method in NUMERISCHE MATHEMATIK
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01232656

    DOI

    http://dx.doi.org/10.1007/bf01232656

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1020819052


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Groupe de Recherches de G\u00e9od\u00e9sie Spatiale, Centre National d'Etudes Spatiales, 18 Avenue Edouard Belin, 31055, Toulouse Cedex 05, France", 
              "id": "http://www.grid.ac/institutes/grid.13349.3c", 
              "name": [
                "Groupe de Recherches de G\u00e9od\u00e9sie Spatiale, Centre National d'Etudes Spatiales, 18 Avenue Edouard Belin, 31055, Toulouse Cedex 05, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Borderies", 
            "givenName": "N.", 
            "id": "sg:person.014765272656.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014765272656.72"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01228434", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047601251", 
              "https://doi.org/10.1007/bf01228434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01229118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052522738", 
              "https://doi.org/10.1007/bf01229118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02163234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052099910", 
              "https://doi.org/10.1007/bf02163234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02163179", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047002875", 
              "https://doi.org/10.1007/bf02163179"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1977-11", 
        "datePublishedReg": "1977-11-01", 
        "description": "This paper deals with the Adams-Moulton-Cowell multistep integrator, as described by Oestwinter and Cohen (1972). In order to evaluate the accuracy of the method, we started to test it in the case of the unperturbed two-body motion; numerical instability may arise by integrating first order systems. The accuracy is improved by applying a Sundmann transformation of the independent variable. The algorithm is then modified such that the equations of pure keplerian motion are integrated with respect to the new independent variable without truncation error; numerical experiments show the considerable improvement of accuracy and the reduction of computing time for Keplerian motion.If terms of the disturbing function of the Earth are added to the central potential, the time-transformation is less effective. With a modification of this time-transformation as given by Moynot in 1971, it is possible to reduce the propagation of the truncation error in the J2 problem.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01232656", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136436", 
            "issn": [
              "0008-8714", 
              "0923-2958"
            ], 
            "name": "Celestial Mechanics and Dynamical Astronomy", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "16"
          }
        ], 
        "keywords": [
          "Adams-Moulton", 
          "numerical instability", 
          "truncation error", 
          "motion", 
          "considerable improvement", 
          "first order system", 
          "numerical experiments", 
          "pure Keplerian motion", 
          "accuracy", 
          "order system", 
          "propagation", 
          "error", 
          "two-body motion", 
          "algorithm", 
          "equations", 
          "instability", 
          "J2 problem", 
          "new independent variable", 
          "Keplerian motion", 
          "experiments", 
          "order", 
          "system", 
          "independent variables", 
          "method", 
          "integrator", 
          "Earth", 
          "improvement", 
          "reduction", 
          "modification", 
          "potential", 
          "problem", 
          "transformation", 
          "respect", 
          "regularization", 
          "time", 
          "terms", 
          "variables", 
          "cases", 
          "function", 
          "time regularization", 
          "disturbing function", 
          "Cohen", 
          "central potential", 
          "paper", 
          "multistep integrators", 
          "Cowell multistep integrator", 
          "Oestwinter", 
          "Sundmann transformation", 
          "Moynot", 
          "Cowell algorithm"
        ], 
        "name": "Time regularization of an Adams-Moulton-Cowell algorithm", 
        "pagination": "291-308", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1020819052"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01232656"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01232656", 
          "https://app.dimensions.ai/details/publication/pub.1020819052"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_136.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01232656"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01232656'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01232656'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01232656'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01232656'


     

    This table displays all metadata directly associated to this object as RDF triples.

    124 TRIPLES      22 PREDICATES      80 URIs      68 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01232656 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author Ndc6ee8a2ae794aebaf20f960bf95e9d8
    4 schema:citation sg:pub.10.1007/bf01228434
    5 sg:pub.10.1007/bf01229118
    6 sg:pub.10.1007/bf02163179
    7 sg:pub.10.1007/bf02163234
    8 schema:datePublished 1977-11
    9 schema:datePublishedReg 1977-11-01
    10 schema:description This paper deals with the Adams-Moulton-Cowell multistep integrator, as described by Oestwinter and Cohen (1972). In order to evaluate the accuracy of the method, we started to test it in the case of the unperturbed two-body motion; numerical instability may arise by integrating first order systems. The accuracy is improved by applying a Sundmann transformation of the independent variable. The algorithm is then modified such that the equations of pure keplerian motion are integrated with respect to the new independent variable without truncation error; numerical experiments show the considerable improvement of accuracy and the reduction of computing time for Keplerian motion.If terms of the disturbing function of the Earth are added to the central potential, the time-transformation is less effective. With a modification of this time-transformation as given by Moynot in 1971, it is possible to reduce the propagation of the truncation error in the J2 problem.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N126152ee71384b0495354bf1b6619453
    15 N16bcc17b257e4e17be6697ac4cbae96f
    16 sg:journal.1136436
    17 schema:keywords Adams-Moulton
    18 Cohen
    19 Cowell algorithm
    20 Cowell multistep integrator
    21 Earth
    22 J2 problem
    23 Keplerian motion
    24 Moynot
    25 Oestwinter
    26 Sundmann transformation
    27 accuracy
    28 algorithm
    29 cases
    30 central potential
    31 considerable improvement
    32 disturbing function
    33 equations
    34 error
    35 experiments
    36 first order system
    37 function
    38 improvement
    39 independent variables
    40 instability
    41 integrator
    42 method
    43 modification
    44 motion
    45 multistep integrators
    46 new independent variable
    47 numerical experiments
    48 numerical instability
    49 order
    50 order system
    51 paper
    52 potential
    53 problem
    54 propagation
    55 pure Keplerian motion
    56 reduction
    57 regularization
    58 respect
    59 system
    60 terms
    61 time
    62 time regularization
    63 transformation
    64 truncation error
    65 two-body motion
    66 variables
    67 schema:name Time regularization of an Adams-Moulton-Cowell algorithm
    68 schema:pagination 291-308
    69 schema:productId N8ef9ec087a14474f9a9325377d4509cb
    70 Ne455363172194128ba2f39e2cbf2e60c
    71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020819052
    72 https://doi.org/10.1007/bf01232656
    73 schema:sdDatePublished 2022-01-01T18:01
    74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    75 schema:sdPublisher N5fa6e8a3d4d94102b496e73b19dd43c4
    76 schema:url https://doi.org/10.1007/bf01232656
    77 sgo:license sg:explorer/license/
    78 sgo:sdDataset articles
    79 rdf:type schema:ScholarlyArticle
    80 N126152ee71384b0495354bf1b6619453 schema:issueNumber 3
    81 rdf:type schema:PublicationIssue
    82 N16bcc17b257e4e17be6697ac4cbae96f schema:volumeNumber 16
    83 rdf:type schema:PublicationVolume
    84 N5fa6e8a3d4d94102b496e73b19dd43c4 schema:name Springer Nature - SN SciGraph project
    85 rdf:type schema:Organization
    86 N8ef9ec087a14474f9a9325377d4509cb schema:name doi
    87 schema:value 10.1007/bf01232656
    88 rdf:type schema:PropertyValue
    89 Ndc6ee8a2ae794aebaf20f960bf95e9d8 rdf:first sg:person.014765272656.72
    90 rdf:rest rdf:nil
    91 Ne455363172194128ba2f39e2cbf2e60c schema:name dimensions_id
    92 schema:value pub.1020819052
    93 rdf:type schema:PropertyValue
    94 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Mathematical Sciences
    96 rdf:type schema:DefinedTerm
    97 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Applied Mathematics
    99 rdf:type schema:DefinedTerm
    100 sg:journal.1136436 schema:issn 0008-8714
    101 0923-2958
    102 schema:name Celestial Mechanics and Dynamical Astronomy
    103 schema:publisher Springer Nature
    104 rdf:type schema:Periodical
    105 sg:person.014765272656.72 schema:affiliation grid-institutes:grid.13349.3c
    106 schema:familyName Borderies
    107 schema:givenName N.
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014765272656.72
    109 rdf:type schema:Person
    110 sg:pub.10.1007/bf01228434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047601251
    111 https://doi.org/10.1007/bf01228434
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1007/bf01229118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052522738
    114 https://doi.org/10.1007/bf01229118
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1007/bf02163179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047002875
    117 https://doi.org/10.1007/bf02163179
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.1007/bf02163234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052099910
    120 https://doi.org/10.1007/bf02163234
    121 rdf:type schema:CreativeWork
    122 grid-institutes:grid.13349.3c schema:alternateName Groupe de Recherches de Géodésie Spatiale, Centre National d'Etudes Spatiales, 18 Avenue Edouard Belin, 31055, Toulouse Cedex 05, France
    123 schema:name Groupe de Recherches de Géodésie Spatiale, Centre National d'Etudes Spatiales, 18 Avenue Edouard Belin, 31055, Toulouse Cedex 05, France
    124 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...