Cellular algebras View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-12

AUTHORS

J. J. Graham, G. I. Lehrer

ABSTRACT

A class of associative algebras (“cellular”) is defined by means of multiplicative properties of a basis. They are shown to have cell representations whose structure depends on certain invariant bilinear forms. One thus obtains a general description of their irreducible representations and block theory as well as criteria for semisimplicity. These concepts are used to discuss the Brauer centraliser algebras, whose irreducibles are described in full generality, the Ariki-Koike algebras, which include the Hecke algebras of type A and B and (a generalisation of) the Temperley-Lieb and Jones' recently defined “annular” algebras. In particular the latter are shown to be non-semisimple when the defining paramter δ satisfies\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\gamma _{g(n)} (\tfrac{{ - \delta }}{2}) = 1$$ \end{document}, where γn is then-th Tchebychev polynomial andg(n) is a quadratic polynomial. More... »

PAGES

1-34

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01232365

DOI

http://dx.doi.org/10.1007/bf01232365

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041790561


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Mathematics and Statistics, University of Sydney, 2006, Sydney, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1013.3", 
          "name": [
            "School of Mathematics and Statistics, University of Sydney, 2006, Sydney, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Graham", 
        "givenName": "J. J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mathematics and Statistics, University of Sydney, 2006, Sydney, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1013.3", 
          "name": [
            "School of Mathematics and Statistics, University of Sydney, 2006, Sydney, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lehrer", 
        "givenName": "G. I.", 
        "id": "sg:person.015636362211.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015636362211.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01402273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016605596", 
          "https://doi.org/10.1007/bf01402273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0071433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013827773", 
          "https://doi.org/10.1007/bfb0071433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02571376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036701804", 
          "https://doi.org/10.1007/bf02571376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01390031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029855172", 
          "https://doi.org/10.1007/bf01390031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00400222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005564454", 
          "https://doi.org/10.1007/bf00400222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01457308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003185696", 
          "https://doi.org/10.1007/bf01457308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8658-1_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024618172", 
          "https://doi.org/10.1007/978-3-0348-8658-1_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01420727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037694374", 
          "https://doi.org/10.1007/bf01420727"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996-12", 
    "datePublishedReg": "1996-12-01", 
    "description": "A class of associative algebras (\u201ccellular\u201d) is defined by means of multiplicative properties of a basis. They are shown to have cell representations whose structure depends on certain invariant bilinear forms. One thus obtains a general description of their irreducible representations and block theory as well as criteria for semisimplicity. These concepts are used to discuss the Brauer centraliser algebras, whose irreducibles are described in full generality, the Ariki-Koike algebras, which include the Hecke algebras of type A and B and (a generalisation of) the Temperley-Lieb and Jones' recently defined \u201cannular\u201d algebras. In particular the latter are shown to be non-semisimple when the defining paramter \u03b4 satisfies\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\gamma _{g(n)} (\\tfrac{{ - \\delta }}{2}) = 1$$\n\\end{document}, where \u03b3n is then-th Tchebychev polynomial andg(n) is a quadratic polynomial.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01232365", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136369", 
        "issn": [
          "0020-9910", 
          "1432-1297"
        ], 
        "name": "Inventiones Mathematicae", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "123"
      }
    ], 
    "keywords": [
      "Ariki\u2013Koike algebras", 
      "Temperley\u2013Lieb", 
      "invariant bilinear form", 
      "cellular algebras", 
      "associative algebra", 
      "Hecke algebra", 
      "algebra", 
      "bilinear form", 
      "irreducible representations", 
      "Tchebychev polynomials", 
      "full generality", 
      "quadratic polynomial", 
      "multiplicative property", 
      "block theory", 
      "polynomials", 
      "cell representation", 
      "semisimplicity", 
      "representation", 
      "irreducibles", 
      "general description", 
      "theory", 
      "class", 
      "generality", 
      "\u03b3n", 
      "description", 
      "criteria", 
      "form", 
      "concept", 
      "means", 
      "properties", 
      "structure", 
      "Jones", 
      "basis", 
      "type A", 
      "certain invariant bilinear forms", 
      "Brauer centraliser algebras", 
      "centraliser algebras", 
      "paramter \u03b4"
    ], 
    "name": "Cellular algebras", 
    "pagination": "1-34", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041790561"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01232365"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01232365", 
      "https://app.dimensions.ai/details/publication/pub.1041790561"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_291.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01232365"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01232365'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01232365'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01232365'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01232365'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      22 PREDICATES      72 URIs      56 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01232365 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nb49efcd77438446e9ae70124873bed9f
4 schema:citation sg:pub.10.1007/978-3-0348-8658-1_14
5 sg:pub.10.1007/bf00400222
6 sg:pub.10.1007/bf01390031
7 sg:pub.10.1007/bf01402273
8 sg:pub.10.1007/bf01420727
9 sg:pub.10.1007/bf01457308
10 sg:pub.10.1007/bf02571376
11 sg:pub.10.1007/bfb0071433
12 schema:datePublished 1996-12
13 schema:datePublishedReg 1996-12-01
14 schema:description A class of associative algebras (“cellular”) is defined by means of multiplicative properties of a basis. They are shown to have cell representations whose structure depends on certain invariant bilinear forms. One thus obtains a general description of their irreducible representations and block theory as well as criteria for semisimplicity. These concepts are used to discuss the Brauer centraliser algebras, whose irreducibles are described in full generality, the Ariki-Koike algebras, which include the Hecke algebras of type A and B and (a generalisation of) the Temperley-Lieb and Jones' recently defined “annular” algebras. In particular the latter are shown to be non-semisimple when the defining paramter δ satisfies\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\gamma _{g(n)} (\tfrac{{ - \delta }}{2}) = 1$$ \end{document}, where γn is then-th Tchebychev polynomial andg(n) is a quadratic polynomial.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf Naa2a3532268d4ae6bddf271ed64d2024
19 Nbf53ab776f1c44eda5ea5969592fd6ef
20 sg:journal.1136369
21 schema:keywords Ariki–Koike algebras
22 Brauer centraliser algebras
23 Hecke algebra
24 Jones
25 Tchebychev polynomials
26 Temperley–Lieb
27 algebra
28 associative algebra
29 basis
30 bilinear form
31 block theory
32 cell representation
33 cellular algebras
34 centraliser algebras
35 certain invariant bilinear forms
36 class
37 concept
38 criteria
39 description
40 form
41 full generality
42 general description
43 generality
44 invariant bilinear form
45 irreducible representations
46 irreducibles
47 means
48 multiplicative property
49 paramter δ
50 polynomials
51 properties
52 quadratic polynomial
53 representation
54 semisimplicity
55 structure
56 theory
57 type A
58 γn
59 schema:name Cellular algebras
60 schema:pagination 1-34
61 schema:productId Naa6bd411fdc44fc691abfe20a61b50d5
62 Nbf30b921c83244f5bba1d02e1962962e
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041790561
64 https://doi.org/10.1007/bf01232365
65 schema:sdDatePublished 2022-01-01T18:08
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher Nab677f0182a24fb8b8cce2b1d23eb527
68 schema:url https://doi.org/10.1007/bf01232365
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N8409e45ae4604f859fb0d3d543745217 rdf:first sg:person.015636362211.21
73 rdf:rest rdf:nil
74 Naa2a3532268d4ae6bddf271ed64d2024 schema:volumeNumber 123
75 rdf:type schema:PublicationVolume
76 Naa6bd411fdc44fc691abfe20a61b50d5 schema:name dimensions_id
77 schema:value pub.1041790561
78 rdf:type schema:PropertyValue
79 Nab677f0182a24fb8b8cce2b1d23eb527 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 Nb49efcd77438446e9ae70124873bed9f rdf:first Nef18752867e5431181f9a2d261f401ef
82 rdf:rest N8409e45ae4604f859fb0d3d543745217
83 Nbf30b921c83244f5bba1d02e1962962e schema:name doi
84 schema:value 10.1007/bf01232365
85 rdf:type schema:PropertyValue
86 Nbf53ab776f1c44eda5ea5969592fd6ef schema:issueNumber 1
87 rdf:type schema:PublicationIssue
88 Nef18752867e5431181f9a2d261f401ef schema:affiliation grid-institutes:grid.1013.3
89 schema:familyName Graham
90 schema:givenName J. J.
91 rdf:type schema:Person
92 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
93 schema:name Mathematical Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
96 schema:name Pure Mathematics
97 rdf:type schema:DefinedTerm
98 sg:journal.1136369 schema:issn 0020-9910
99 1432-1297
100 schema:name Inventiones Mathematicae
101 schema:publisher Springer Nature
102 rdf:type schema:Periodical
103 sg:person.015636362211.21 schema:affiliation grid-institutes:grid.1013.3
104 schema:familyName Lehrer
105 schema:givenName G. I.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015636362211.21
107 rdf:type schema:Person
108 sg:pub.10.1007/978-3-0348-8658-1_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024618172
109 https://doi.org/10.1007/978-3-0348-8658-1_14
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bf00400222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005564454
112 https://doi.org/10.1007/bf00400222
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/bf01390031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029855172
115 https://doi.org/10.1007/bf01390031
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bf01402273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016605596
118 https://doi.org/10.1007/bf01402273
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bf01420727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037694374
121 https://doi.org/10.1007/bf01420727
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/bf01457308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003185696
124 https://doi.org/10.1007/bf01457308
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf02571376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036701804
127 https://doi.org/10.1007/bf02571376
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/bfb0071433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013827773
130 https://doi.org/10.1007/bfb0071433
131 rdf:type schema:CreativeWork
132 grid-institutes:grid.1013.3 schema:alternateName School of Mathematics and Statistics, University of Sydney, 2006, Sydney, Australia
133 schema:name School of Mathematics and Statistics, University of Sydney, 2006, Sydney, Australia
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...