The gravitational potential due to uniform disks and rings View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1983-07

AUTHORS

Harry Lass, Leon Blitzer

ABSTRACT

The gravitational potential due to thin uniform disks and rings is obtained in closed form in terms of complete elliptic integrals.

PAGES

225-228

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01232189

DOI

http://dx.doi.org/10.1007/bf01232189

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014350830


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jet Propulsion Laboratory, CA91109, Pasadena, USA", 
          "id": "http://www.grid.ac/institutes/grid.211367.0", 
          "name": [
            "Jet Propulsion Laboratory, CA91109, Pasadena, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lass", 
        "givenName": "Harry", 
        "id": "sg:person.010572101126.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010572101126.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Arizona, 85721, Tucson, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Department of Physics, University of Arizona, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blitzer", 
        "givenName": "Leon", 
        "id": "sg:person.013346131505.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013346131505.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-65138-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029360671", 
          "https://doi.org/10.1007/978-3-642-65138-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1983-07", 
    "datePublishedReg": "1983-07-01", 
    "description": "The gravitational potential due to thin uniform disks and rings is obtained in closed form in terms of complete elliptic integrals.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01232189", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136436", 
        "issn": [
          "0008-8714", 
          "0923-2958"
        ], 
        "name": "Celestial Mechanics and Dynamical Astronomy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "keywords": [
      "potential", 
      "disk", 
      "ring", 
      "form", 
      "uniform disk", 
      "closed form", 
      "terms", 
      "gravitational potential", 
      "complete elliptic integrals", 
      "elliptic integrals", 
      "integrals", 
      "thin uniform disks"
    ], 
    "name": "The gravitational potential due to uniform disks and rings", 
    "pagination": "225-228", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014350830"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01232189"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01232189", 
      "https://app.dimensions.ai/details/publication/pub.1014350830"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T17:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_172.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01232189"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01232189'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01232189'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01232189'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01232189'


 

This table displays all metadata directly associated to this object as RDF triples.

84 TRIPLES      22 PREDICATES      39 URIs      30 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01232189 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Nc956a86d6b944519b2b87e2a575434b6
4 schema:citation sg:pub.10.1007/978-3-642-65138-0
5 schema:datePublished 1983-07
6 schema:datePublishedReg 1983-07-01
7 schema:description The gravitational potential due to thin uniform disks and rings is obtained in closed form in terms of complete elliptic integrals.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N405460bb58e642b8a8fb7d86ab85ddbe
12 Na6e41d0c21b94f5d856d58a687e45e42
13 sg:journal.1136436
14 schema:keywords closed form
15 complete elliptic integrals
16 disk
17 elliptic integrals
18 form
19 gravitational potential
20 integrals
21 potential
22 ring
23 terms
24 thin uniform disks
25 uniform disk
26 schema:name The gravitational potential due to uniform disks and rings
27 schema:pagination 225-228
28 schema:productId N190d34de4c9f4376abdbe7f03ad7f10e
29 N94243e4bd7d64088a37105a39b9cf160
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014350830
31 https://doi.org/10.1007/bf01232189
32 schema:sdDatePublished 2021-11-01T17:56
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N8ae07d66d4fe4330ac79137ab2c8b268
35 schema:url https://doi.org/10.1007/bf01232189
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N190d34de4c9f4376abdbe7f03ad7f10e schema:name doi
40 schema:value 10.1007/bf01232189
41 rdf:type schema:PropertyValue
42 N405460bb58e642b8a8fb7d86ab85ddbe schema:volumeNumber 30
43 rdf:type schema:PublicationVolume
44 N54345df9b84f40ea8f26ece9ee724c93 rdf:first sg:person.013346131505.70
45 rdf:rest rdf:nil
46 N8ae07d66d4fe4330ac79137ab2c8b268 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N94243e4bd7d64088a37105a39b9cf160 schema:name dimensions_id
49 schema:value pub.1014350830
50 rdf:type schema:PropertyValue
51 Na6e41d0c21b94f5d856d58a687e45e42 schema:issueNumber 3
52 rdf:type schema:PublicationIssue
53 Nc956a86d6b944519b2b87e2a575434b6 rdf:first sg:person.010572101126.64
54 rdf:rest N54345df9b84f40ea8f26ece9ee724c93
55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
56 schema:name Mathematical Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
59 schema:name Applied Mathematics
60 rdf:type schema:DefinedTerm
61 sg:journal.1136436 schema:issn 0008-8714
62 0923-2958
63 schema:name Celestial Mechanics and Dynamical Astronomy
64 schema:publisher Springer Nature
65 rdf:type schema:Periodical
66 sg:person.010572101126.64 schema:affiliation grid-institutes:grid.211367.0
67 schema:familyName Lass
68 schema:givenName Harry
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010572101126.64
70 rdf:type schema:Person
71 sg:person.013346131505.70 schema:affiliation grid-institutes:grid.134563.6
72 schema:familyName Blitzer
73 schema:givenName Leon
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013346131505.70
75 rdf:type schema:Person
76 sg:pub.10.1007/978-3-642-65138-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029360671
77 https://doi.org/10.1007/978-3-642-65138-0
78 rdf:type schema:CreativeWork
79 grid-institutes:grid.134563.6 schema:alternateName Department of Physics, University of Arizona, 85721, Tucson, AZ, USA
80 schema:name Department of Physics, University of Arizona, 85721, Tucson, AZ, USA
81 rdf:type schema:Organization
82 grid-institutes:grid.211367.0 schema:alternateName Jet Propulsion Laboratory, CA91109, Pasadena, USA
83 schema:name Jet Propulsion Laboratory, CA91109, Pasadena, USA
84 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...