Resonant and non-resonant gravity-gradient perturbations of a tumbling tri-axial satellite View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1971-09

AUTHORS

Donald L. Hitzl, John V. Breakwell

ABSTRACT

Gravity-gradient perturbations of the attitude motion of a tumbling tri-axial satellite are investigated. The satellite center of mass is considered to be in an elliptical orbit about a spherical planet and to be tumbling at a frequency much greater than orbital rate. In determining the unperturbed (free) motion of the satellite, a canonical form for the solution of the torque-free motion of a rigid body is obtained. By casting the gravity-gradient perturbing torque in terms of a perturbing Hamiltonian, the long-term changes in the rotational motion are derived. In particular, far from resonance, there are no long-period changes in the magnitude of the rotational angular momentum and rotational energy, and the rotational angular momentum vector precesses abound the orbital angular momentum vector.At resonance, a low-order commensurability exists between the polhode frequency and tumbling frequency. Near resonance, there may be small long-period fluctuations in the rotational energy and angular momentum magnitude. Moreover, the precession of the rotational angular momentum vector about the orbital angular momentum vector now contains substantial long-period contributions superimposed on the non-resonant precession rate. By averaging certain long-period elliptic functions, the mean value near resonance for the precession of the rotational angular momentum vector is obtained in terms of initial conditions. More... »

PAGES

346-383

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01231806

DOI

http://dx.doi.org/10.1007/bf01231806

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052776124


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lockheed Palo Alto Research Laboratories, Palo Alto, Calif", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Lockheed Palo Alto Research Laboratories, Palo Alto, Calif"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hitzl", 
        "givenName": "Donald L.", 
        "id": "sg:person.014315761227.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014315761227.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University, Stanford, Calif", 
          "id": "http://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Stanford University, Stanford, Calif"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Breakwell", 
        "givenName": "John V.", 
        "id": "sg:person.014463552077.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014463552077.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-52803-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001750401", 
          "https://doi.org/10.1007/978-3-642-52803-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1971-09", 
    "datePublishedReg": "1971-09-01", 
    "description": "Gravity-gradient perturbations of the attitude motion of a tumbling tri-axial satellite are investigated. The satellite center of mass is considered to be in an elliptical orbit about a spherical planet and to be tumbling at a frequency much greater than orbital rate. In determining the unperturbed (free) motion of the satellite, a canonical form for the solution of the torque-free motion of a rigid body is obtained. By casting the gravity-gradient perturbing torque in terms of a perturbing Hamiltonian, the long-term changes in the rotational motion are derived. In particular, far from resonance, there are no long-period changes in the magnitude of the rotational angular momentum and rotational energy, and the rotational angular momentum vector precesses abound the orbital angular momentum vector.At resonance, a low-order commensurability exists between the polhode frequency and tumbling frequency. Near resonance, there may be small long-period fluctuations in the rotational energy and angular momentum magnitude. Moreover, the precession of the rotational angular momentum vector about the orbital angular momentum vector now contains substantial long-period contributions superimposed on the non-resonant precession rate. By averaging certain long-period elliptic functions, the mean value near resonance for the precession of the rotational angular momentum vector is obtained in terms of initial conditions.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01231806", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136436", 
        "issn": [
          "0008-8714", 
          "0923-2958"
        ], 
        "name": "Celestial Mechanics and Dynamical Astronomy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "angular momentum magnitude", 
      "torque-free motion", 
      "attitude motion", 
      "long-period fluctuations", 
      "rigid body", 
      "perturbing torque", 
      "satellite", 
      "motion", 
      "rotational motion", 
      "angular momentum vector", 
      "low-order commensurabilities", 
      "satellite centers", 
      "rotational energy", 
      "energy", 
      "spherical planet", 
      "initial conditions", 
      "elliptical orbit", 
      "torque", 
      "orbital rate", 
      "orbital angular momentum vector", 
      "momentum vector", 
      "unperturbed motion", 
      "long-period changes", 
      "magnitude", 
      "frequency", 
      "momentum", 
      "resonance", 
      "solution", 
      "rotational angular momentum vector", 
      "angular momentum", 
      "fluctuations", 
      "conditions", 
      "rate", 
      "terms", 
      "precesses", 
      "perturbations", 
      "precession rate", 
      "precession", 
      "orbit", 
      "perturbing Hamiltonian", 
      "vector", 
      "values", 
      "mean value", 
      "mass", 
      "changes", 
      "body", 
      "contribution", 
      "elliptic functions", 
      "canonical form", 
      "form", 
      "function", 
      "planets", 
      "commensurability", 
      "center", 
      "rotational angular momentum", 
      "long-term changes", 
      "Hamiltonian", 
      "Gravity-gradient perturbations", 
      "tri-axial satellite", 
      "gravity-gradient perturbing torque", 
      "rotational angular momentum vector precesses", 
      "angular momentum vector precesses", 
      "momentum vector precesses", 
      "vector precesses", 
      "polhode frequency", 
      "small long-period fluctuations", 
      "momentum magnitude", 
      "substantial long-period contributions", 
      "long-period contributions", 
      "non-resonant precession rate", 
      "certain long-period elliptic functions", 
      "long-period elliptic functions", 
      "non-resonant gravity-gradient perturbations"
    ], 
    "name": "Resonant and non-resonant gravity-gradient perturbations of a tumbling tri-axial satellite", 
    "pagination": "346-383", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052776124"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01231806"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01231806", 
      "https://app.dimensions.ai/details/publication/pub.1052776124"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_146.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01231806"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01231806'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01231806'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01231806'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01231806'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      22 PREDICATES      100 URIs      91 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01231806 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N58430c0460ea47a79985d0c95a77d84c
4 schema:citation sg:pub.10.1007/978-3-642-52803-3
5 schema:datePublished 1971-09
6 schema:datePublishedReg 1971-09-01
7 schema:description Gravity-gradient perturbations of the attitude motion of a tumbling tri-axial satellite are investigated. The satellite center of mass is considered to be in an elliptical orbit about a spherical planet and to be tumbling at a frequency much greater than orbital rate. In determining the unperturbed (free) motion of the satellite, a canonical form for the solution of the torque-free motion of a rigid body is obtained. By casting the gravity-gradient perturbing torque in terms of a perturbing Hamiltonian, the long-term changes in the rotational motion are derived. In particular, far from resonance, there are no long-period changes in the magnitude of the rotational angular momentum and rotational energy, and the rotational angular momentum vector precesses abound the orbital angular momentum vector.At resonance, a low-order commensurability exists between the polhode frequency and tumbling frequency. Near resonance, there may be small long-period fluctuations in the rotational energy and angular momentum magnitude. Moreover, the precession of the rotational angular momentum vector about the orbital angular momentum vector now contains substantial long-period contributions superimposed on the non-resonant precession rate. By averaging certain long-period elliptic functions, the mean value near resonance for the precession of the rotational angular momentum vector is obtained in terms of initial conditions.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N418d39e16d0242da9943d86614911311
12 N705f3888516d4f179172e98240a85d98
13 sg:journal.1136436
14 schema:keywords Gravity-gradient perturbations
15 Hamiltonian
16 angular momentum
17 angular momentum magnitude
18 angular momentum vector
19 angular momentum vector precesses
20 attitude motion
21 body
22 canonical form
23 center
24 certain long-period elliptic functions
25 changes
26 commensurability
27 conditions
28 contribution
29 elliptic functions
30 elliptical orbit
31 energy
32 fluctuations
33 form
34 frequency
35 function
36 gravity-gradient perturbing torque
37 initial conditions
38 long-period changes
39 long-period contributions
40 long-period elliptic functions
41 long-period fluctuations
42 long-term changes
43 low-order commensurabilities
44 magnitude
45 mass
46 mean value
47 momentum
48 momentum magnitude
49 momentum vector
50 momentum vector precesses
51 motion
52 non-resonant gravity-gradient perturbations
53 non-resonant precession rate
54 orbit
55 orbital angular momentum vector
56 orbital rate
57 perturbations
58 perturbing Hamiltonian
59 perturbing torque
60 planets
61 polhode frequency
62 precesses
63 precession
64 precession rate
65 rate
66 resonance
67 rigid body
68 rotational angular momentum
69 rotational angular momentum vector
70 rotational angular momentum vector precesses
71 rotational energy
72 rotational motion
73 satellite
74 satellite centers
75 small long-period fluctuations
76 solution
77 spherical planet
78 substantial long-period contributions
79 terms
80 torque
81 torque-free motion
82 tri-axial satellite
83 unperturbed motion
84 values
85 vector
86 vector precesses
87 schema:name Resonant and non-resonant gravity-gradient perturbations of a tumbling tri-axial satellite
88 schema:pagination 346-383
89 schema:productId N7ab8cef5251a462aaaf220f21e3c9650
90 Nf5418921c5314531b8464ca9cbe40c0a
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052776124
92 https://doi.org/10.1007/bf01231806
93 schema:sdDatePublished 2021-12-01T19:03
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher Ndd424d7b9ce64e1a8117eb3ef4d9e1fc
96 schema:url https://doi.org/10.1007/bf01231806
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N418d39e16d0242da9943d86614911311 schema:volumeNumber 3
101 rdf:type schema:PublicationVolume
102 N4923a82a56cd4e298d2df9e94d73e283 rdf:first sg:person.014463552077.01
103 rdf:rest rdf:nil
104 N58430c0460ea47a79985d0c95a77d84c rdf:first sg:person.014315761227.32
105 rdf:rest N4923a82a56cd4e298d2df9e94d73e283
106 N705f3888516d4f179172e98240a85d98 schema:issueNumber 3
107 rdf:type schema:PublicationIssue
108 N7ab8cef5251a462aaaf220f21e3c9650 schema:name doi
109 schema:value 10.1007/bf01231806
110 rdf:type schema:PropertyValue
111 Ndd424d7b9ce64e1a8117eb3ef4d9e1fc schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 Nf5418921c5314531b8464ca9cbe40c0a schema:name dimensions_id
114 schema:value pub.1052776124
115 rdf:type schema:PropertyValue
116 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
117 schema:name Mathematical Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
120 schema:name Applied Mathematics
121 rdf:type schema:DefinedTerm
122 sg:journal.1136436 schema:issn 0008-8714
123 0923-2958
124 schema:name Celestial Mechanics and Dynamical Astronomy
125 schema:publisher Springer Nature
126 rdf:type schema:Periodical
127 sg:person.014315761227.32 schema:affiliation grid-institutes:None
128 schema:familyName Hitzl
129 schema:givenName Donald L.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014315761227.32
131 rdf:type schema:Person
132 sg:person.014463552077.01 schema:affiliation grid-institutes:grid.168010.e
133 schema:familyName Breakwell
134 schema:givenName John V.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014463552077.01
136 rdf:type schema:Person
137 sg:pub.10.1007/978-3-642-52803-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001750401
138 https://doi.org/10.1007/978-3-642-52803-3
139 rdf:type schema:CreativeWork
140 grid-institutes:None schema:alternateName Lockheed Palo Alto Research Laboratories, Palo Alto, Calif
141 schema:name Lockheed Palo Alto Research Laboratories, Palo Alto, Calif
142 rdf:type schema:Organization
143 grid-institutes:grid.168010.e schema:alternateName Stanford University, Stanford, Calif
144 schema:name Stanford University, Stanford, Calif
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...