On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-12

AUTHORS

Jeff Cheeger, Gang Tian

ABSTRACT

N/A

PAGES

493-571

Journal

TITLE

Inventiones Mathematicae

ISSUE

1

VOLUME

118

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01231543

DOI

http://dx.doi.org/10.1007/bf01231543

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036977612


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Courant Institute of Mathematical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.482020.c", 
          "name": [
            "Courant Institute of Mathematics, 251 Mesces Street, 10012, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheeger", 
        "givenName": "Jeff", 
        "id": "sg:person.01362510044.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362510044.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Courant Institute of Mathematical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.482020.c", 
          "name": [
            "Courant Institute of Mathematics, 251 Mesces Street, 10012, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tian", 
        "givenName": "Gang", 
        "id": "sg:person.010306171743.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010306171743.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01389077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004492392", 
          "https://doi.org/10.1007/bf01389077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.76.5.2103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010517322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01389045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010733718", 
          "https://doi.org/10.1007/bf01389045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01243902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015109450", 
          "https://doi.org/10.1007/bf01243902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1019285404", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-96379-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019285404", 
          "https://doi.org/10.1007/978-3-642-96379-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-96379-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019285404", 
          "https://doi.org/10.1007/978-3-642-96379-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(86)90163-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024265565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(86)90163-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024265565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01233434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027746872", 
          "https://doi.org/10.1007/bf01233434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01231499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041836141", 
          "https://doi.org/10.1007/bf01231499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01231499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041836141", 
          "https://doi.org/10.1007/bf01231499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0894-0347-1989-0999661-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041979186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1970699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069676014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1971113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069676413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2006981", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069694746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2006984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069694749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/jdg/1214438175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084459453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/jdg/1214445311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084459792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/jdg/1214448075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084459889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/pspum/015/0267604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089193292"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-12", 
    "datePublishedReg": "1994-12-01", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01231543", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136369", 
        "issn": [
          "0020-9910", 
          "1432-1297"
        ], 
        "name": "Inventiones Mathematicae", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "118"
      }
    ], 
    "name": "On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay", 
    "pagination": "493-571", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b025e5bf40fe3c7d6355ef43c1475d9e29454ba62c6e79faea0e6a4510f46479"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01231543"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036977612"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01231543", 
      "https://app.dimensions.ai/details/publication/pub.1036977612"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000482.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01231543"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01231543'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01231543'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01231543'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01231543'


 

This table displays all metadata directly associated to this object as RDF triples.

118 TRIPLES      19 PREDICATES      42 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01231543 schema:author Nb76a8a4a52ab480784b4203ea58d8e65
2 schema:citation sg:pub.10.1007/978-3-642-96379-7
3 sg:pub.10.1007/bf01231499
4 sg:pub.10.1007/bf01233434
5 sg:pub.10.1007/bf01243902
6 sg:pub.10.1007/bf01389045
7 sg:pub.10.1007/bf01389077
8 https://app.dimensions.ai/details/publication/pub.1019285404
9 https://doi.org/10.1016/0370-1573(86)90163-8
10 https://doi.org/10.1073/pnas.76.5.2103
11 https://doi.org/10.1090/pspum/015/0267604
12 https://doi.org/10.1090/s0894-0347-1989-0999661-1
13 https://doi.org/10.2307/1970699
14 https://doi.org/10.2307/1971113
15 https://doi.org/10.2307/2006981
16 https://doi.org/10.2307/2006984
17 https://doi.org/10.4310/jdg/1214438175
18 https://doi.org/10.4310/jdg/1214445311
19 https://doi.org/10.4310/jdg/1214448075
20 schema:datePublished 1994-12
21 schema:datePublishedReg 1994-12-01
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N6e741ad98c16478fbd11ef58c40831d3
26 Nd0e7f7e9cc794223a7517cf67aadd35b
27 sg:journal.1136369
28 schema:name On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay
29 schema:pagination 493-571
30 schema:productId N073a171aaedc45d9a168a086ded5294f
31 N702918ad329944d7b87067a7f79c72ea
32 N7b98cd4a9c3144b1ae7683d7edc695ef
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036977612
34 https://doi.org/10.1007/bf01231543
35 schema:sdDatePublished 2019-04-10T17:24
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N7434421c7c654afc8da42f54d57bbde9
38 schema:url http://link.springer.com/10.1007/BF01231543
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N073a171aaedc45d9a168a086ded5294f schema:name doi
43 schema:value 10.1007/bf01231543
44 rdf:type schema:PropertyValue
45 N6db28223341c4227a5b91fe3c738dae2 rdf:first sg:person.010306171743.47
46 rdf:rest rdf:nil
47 N6e741ad98c16478fbd11ef58c40831d3 schema:issueNumber 1
48 rdf:type schema:PublicationIssue
49 N702918ad329944d7b87067a7f79c72ea schema:name readcube_id
50 schema:value b025e5bf40fe3c7d6355ef43c1475d9e29454ba62c6e79faea0e6a4510f46479
51 rdf:type schema:PropertyValue
52 N7434421c7c654afc8da42f54d57bbde9 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N7b98cd4a9c3144b1ae7683d7edc695ef schema:name dimensions_id
55 schema:value pub.1036977612
56 rdf:type schema:PropertyValue
57 Nb76a8a4a52ab480784b4203ea58d8e65 rdf:first sg:person.01362510044.04
58 rdf:rest N6db28223341c4227a5b91fe3c738dae2
59 Nd0e7f7e9cc794223a7517cf67aadd35b schema:volumeNumber 118
60 rdf:type schema:PublicationVolume
61 sg:journal.1136369 schema:issn 0020-9910
62 1432-1297
63 schema:name Inventiones Mathematicae
64 rdf:type schema:Periodical
65 sg:person.010306171743.47 schema:affiliation https://www.grid.ac/institutes/grid.482020.c
66 schema:familyName Tian
67 schema:givenName Gang
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010306171743.47
69 rdf:type schema:Person
70 sg:person.01362510044.04 schema:affiliation https://www.grid.ac/institutes/grid.482020.c
71 schema:familyName Cheeger
72 schema:givenName Jeff
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362510044.04
74 rdf:type schema:Person
75 sg:pub.10.1007/978-3-642-96379-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019285404
76 https://doi.org/10.1007/978-3-642-96379-7
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bf01231499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041836141
79 https://doi.org/10.1007/bf01231499
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf01233434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027746872
82 https://doi.org/10.1007/bf01233434
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/bf01243902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015109450
85 https://doi.org/10.1007/bf01243902
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/bf01389045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010733718
88 https://doi.org/10.1007/bf01389045
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf01389077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004492392
91 https://doi.org/10.1007/bf01389077
92 rdf:type schema:CreativeWork
93 https://app.dimensions.ai/details/publication/pub.1019285404 schema:CreativeWork
94 https://doi.org/10.1016/0370-1573(86)90163-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024265565
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1073/pnas.76.5.2103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010517322
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1090/pspum/015/0267604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089193292
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1090/s0894-0347-1989-0999661-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041979186
101 rdf:type schema:CreativeWork
102 https://doi.org/10.2307/1970699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676014
103 rdf:type schema:CreativeWork
104 https://doi.org/10.2307/1971113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676413
105 rdf:type schema:CreativeWork
106 https://doi.org/10.2307/2006981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069694746
107 rdf:type schema:CreativeWork
108 https://doi.org/10.2307/2006984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069694749
109 rdf:type schema:CreativeWork
110 https://doi.org/10.4310/jdg/1214438175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459453
111 rdf:type schema:CreativeWork
112 https://doi.org/10.4310/jdg/1214445311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459792
113 rdf:type schema:CreativeWork
114 https://doi.org/10.4310/jdg/1214448075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459889
115 rdf:type schema:CreativeWork
116 https://www.grid.ac/institutes/grid.482020.c schema:alternateName Courant Institute of Mathematical Sciences
117 schema:name Courant Institute of Mathematics, 251 Mesces Street, 10012, New York, NY, USA
118 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...