Expansion of the planetary disturbing function View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1971-12

AUTHORS

R. Broucke, G. Smith

ABSTRACT

Some methods are described for the expansion of the disturbing function in planetary theory. One method uses the classical binomial expansion theorem or a successive approximation process derived from it. Another method is a direct application of the Laplace series expansions. For both methods it is proposed to first prepare the series to be manipulated by a scaling operation. These methods can be applied either in a literal or in a numerical form, or any combination of both, but they are especially designed for use on a large scale digital computer with standard Poisson series programs. No usage is made of Newcomb operators or derivatives of Laplace coefficients. More... »

PAGES

490-499

References to SciGraph publications

  • 1970-03. How to assemble a Keplerian processor in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1969-06. A programming system for analytical series expansions on a computer in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01231405

    DOI

    http://dx.doi.org/10.1007/bf01231405

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1040192209


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of California Los Angeles", 
              "id": "https://www.grid.ac/institutes/grid.19006.3e", 
              "name": [
                "School of Engineering and Applied Science, University of California, Los Angeles, Calif., USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Broucke", 
            "givenName": "R.", 
            "id": "sg:person.016066026011.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016066026011.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California Los Angeles", 
              "id": "https://www.grid.ac/institutes/grid.19006.3e", 
              "name": [
                "School of Engineering and Applied Science, University of California, Los Angeles, Calif., USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Smith", 
            "givenName": "G.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01228844", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018068201", 
              "https://doi.org/10.1007/bf01228844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01228844", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018068201", 
              "https://doi.org/10.1007/bf01228844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230447", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028510411", 
              "https://doi.org/10.1007/bf01230447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230447", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028510411", 
              "https://doi.org/10.1007/bf01230447"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1971-12", 
        "datePublishedReg": "1971-12-01", 
        "description": "Some methods are described for the expansion of the disturbing function in planetary theory. One method uses the classical binomial expansion theorem or a successive approximation process derived from it. Another method is a direct application of the Laplace series expansions. For both methods it is proposed to first prepare the series to be manipulated by a scaling operation. These methods can be applied either in a literal or in a numerical form, or any combination of both, but they are especially designed for use on a large scale digital computer with standard Poisson series programs. No usage is made of Newcomb operators or derivatives of Laplace coefficients.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01231405", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136436", 
            "issn": [
              "0008-8714", 
              "0923-2958"
            ], 
            "name": "Celestial Mechanics and Dynamical Astronomy", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3-4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "name": "Expansion of the planetary disturbing function", 
        "pagination": "490-499", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "bf7627135946c15dcb9209b66977ea60efa0b7adbc7c662132964531914e5159"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01231405"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1040192209"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01231405", 
          "https://app.dimensions.ai/details/publication/pub.1040192209"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46760_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01231405"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01231405'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01231405'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01231405'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01231405'


     

    This table displays all metadata directly associated to this object as RDF triples.

    75 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01231405 schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author Na822fe6560354d49b9030090b38e0ebb
    4 schema:citation sg:pub.10.1007/bf01228844
    5 sg:pub.10.1007/bf01230447
    6 schema:datePublished 1971-12
    7 schema:datePublishedReg 1971-12-01
    8 schema:description Some methods are described for the expansion of the disturbing function in planetary theory. One method uses the classical binomial expansion theorem or a successive approximation process derived from it. Another method is a direct application of the Laplace series expansions. For both methods it is proposed to first prepare the series to be manipulated by a scaling operation. These methods can be applied either in a literal or in a numerical form, or any combination of both, but they are especially designed for use on a large scale digital computer with standard Poisson series programs. No usage is made of Newcomb operators or derivatives of Laplace coefficients.
    9 schema:genre research_article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N693d764f8bd84ef8ac914f9c5b7e94fd
    13 Ne965ecbacb81483da826116c0fcc90df
    14 sg:journal.1136436
    15 schema:name Expansion of the planetary disturbing function
    16 schema:pagination 490-499
    17 schema:productId N644a15cab2bc41e2b420e84ea2352324
    18 N8d22ba21bd18448cae296591079520b5
    19 Nd9d165ed4cf1487a91a52fffeeb518ff
    20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040192209
    21 https://doi.org/10.1007/bf01231405
    22 schema:sdDatePublished 2019-04-11T13:32
    23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    24 schema:sdPublisher N34cd563797214093855beaeff443fce7
    25 schema:url http://link.springer.com/10.1007/BF01231405
    26 sgo:license sg:explorer/license/
    27 sgo:sdDataset articles
    28 rdf:type schema:ScholarlyArticle
    29 N2975e9eb3c544292bcaee8461b93e5d9 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
    30 schema:familyName Smith
    31 schema:givenName G.
    32 rdf:type schema:Person
    33 N34cd563797214093855beaeff443fce7 schema:name Springer Nature - SN SciGraph project
    34 rdf:type schema:Organization
    35 N62e6b3aad7b845d1872f81c9c9d517d6 rdf:first N2975e9eb3c544292bcaee8461b93e5d9
    36 rdf:rest rdf:nil
    37 N644a15cab2bc41e2b420e84ea2352324 schema:name readcube_id
    38 schema:value bf7627135946c15dcb9209b66977ea60efa0b7adbc7c662132964531914e5159
    39 rdf:type schema:PropertyValue
    40 N693d764f8bd84ef8ac914f9c5b7e94fd schema:volumeNumber 4
    41 rdf:type schema:PublicationVolume
    42 N8d22ba21bd18448cae296591079520b5 schema:name dimensions_id
    43 schema:value pub.1040192209
    44 rdf:type schema:PropertyValue
    45 Na822fe6560354d49b9030090b38e0ebb rdf:first sg:person.016066026011.84
    46 rdf:rest N62e6b3aad7b845d1872f81c9c9d517d6
    47 Nd9d165ed4cf1487a91a52fffeeb518ff schema:name doi
    48 schema:value 10.1007/bf01231405
    49 rdf:type schema:PropertyValue
    50 Ne965ecbacb81483da826116c0fcc90df schema:issueNumber 3-4
    51 rdf:type schema:PublicationIssue
    52 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    53 schema:name Mathematical Sciences
    54 rdf:type schema:DefinedTerm
    55 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    56 schema:name Statistics
    57 rdf:type schema:DefinedTerm
    58 sg:journal.1136436 schema:issn 0008-8714
    59 0923-2958
    60 schema:name Celestial Mechanics and Dynamical Astronomy
    61 rdf:type schema:Periodical
    62 sg:person.016066026011.84 schema:affiliation https://www.grid.ac/institutes/grid.19006.3e
    63 schema:familyName Broucke
    64 schema:givenName R.
    65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016066026011.84
    66 rdf:type schema:Person
    67 sg:pub.10.1007/bf01228844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018068201
    68 https://doi.org/10.1007/bf01228844
    69 rdf:type schema:CreativeWork
    70 sg:pub.10.1007/bf01230447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028510411
    71 https://doi.org/10.1007/bf01230447
    72 rdf:type schema:CreativeWork
    73 https://www.grid.ac/institutes/grid.19006.3e schema:alternateName University of California Los Angeles
    74 schema:name School of Engineering and Applied Science, University of California, Los Angeles, Calif., USA
    75 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...