Lie transforms and the Hamiltonization of non-Hamiltonian systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1971-12

AUTHORS

Ahmed Aly Kamel

ABSTRACT

To develop the perturbation solution of the non-Hamiltonian system of differential equationsy=g(y, t; ε), it is sufficient to obtain the perturbation solution of a Hamiltonian system represented by the HamiltonianK=Y·g(y, t; ɛ) which is linear in the adjoint vectorY. This Hamiltonization allows the direct use of the perturbation methods already established for Hamiltonian systems. To demonstrate this fact, a Hamiltonian algorithm developed by this author and based on the Lie-Deprit transform is applied to the Hamiltonized system and is shown to be equivalent to the application of the non-Hamiltonian form of this same algorithm to the original non-Hamiltonian system. More... »

PAGES

397-405

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01231400

DOI

http://dx.doi.org/10.1007/bf01231400

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033513942


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Dept. of Aeronautics and Astronautics, Stanford University, Stanford, Calif., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kamel", 
        "givenName": "Ahmed Aly", 
        "id": "sg:person.013345305565.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013345305565.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01230455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013280863", 
          "https://doi.org/10.1007/bf01230455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01230455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013280863", 
          "https://doi.org/10.1007/bf01230455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01230436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013740596", 
          "https://doi.org/10.1007/bf01230436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01230436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013740596", 
          "https://doi.org/10.1007/bf01230436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01230435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016915999", 
          "https://doi.org/10.1007/bf01230435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01230435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016915999", 
          "https://doi.org/10.1007/bf01230435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01231807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018415827", 
          "https://doi.org/10.1007/bf01231807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01231807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018415827", 
          "https://doi.org/10.1007/bf01231807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01230434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028683382", 
          "https://doi.org/10.1007/bf01230434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01230434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028683382", 
          "https://doi.org/10.1007/bf01230434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01230629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028918192", 
          "https://doi.org/10.1007/bf01230629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01230629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028918192", 
          "https://doi.org/10.1007/bf01230629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01228838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042537547", 
          "https://doi.org/10.1007/bf01228838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01228838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042537547", 
          "https://doi.org/10.1007/bf01228838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01625278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053688354", 
          "https://doi.org/10.1007/bf01625278"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1971-12", 
    "datePublishedReg": "1971-12-01", 
    "description": "To develop the perturbation solution of the non-Hamiltonian system of differential equationsy=g(y, t; \u03b5), it is sufficient to obtain the perturbation solution of a Hamiltonian system represented by the HamiltonianK=Y\u00b7g(y, t; \u025b) which is linear in the adjoint vectorY. This Hamiltonization allows the direct use of the perturbation methods already established for Hamiltonian systems. To demonstrate this fact, a Hamiltonian algorithm developed by this author and based on the Lie-Deprit transform is applied to the Hamiltonized system and is shown to be equivalent to the application of the non-Hamiltonian form of this same algorithm to the original non-Hamiltonian system.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01231400", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136436", 
        "issn": [
          "0008-8714", 
          "0923-2958"
        ], 
        "name": "Celestial Mechanics and Dynamical Astronomy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "4"
      }
    ], 
    "name": "Lie transforms and the Hamiltonization of non-Hamiltonian systems", 
    "pagination": "397-405", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9fa6d8dffd30135f242fd76723a7a71e373b759b405fa1983dfdf9d0931d9de5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01231400"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033513942"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01231400", 
      "https://app.dimensions.ai/details/publication/pub.1033513942"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46747_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01231400"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01231400'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01231400'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01231400'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01231400'


 

This table displays all metadata directly associated to this object as RDF triples.

93 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01231400 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N48c74bb00539410b84b1b9b86f0797c2
4 schema:citation sg:pub.10.1007/bf01228838
5 sg:pub.10.1007/bf01230434
6 sg:pub.10.1007/bf01230435
7 sg:pub.10.1007/bf01230436
8 sg:pub.10.1007/bf01230455
9 sg:pub.10.1007/bf01230629
10 sg:pub.10.1007/bf01231807
11 sg:pub.10.1007/bf01625278
12 schema:datePublished 1971-12
13 schema:datePublishedReg 1971-12-01
14 schema:description To develop the perturbation solution of the non-Hamiltonian system of differential equationsy=g(y, t; ε), it is sufficient to obtain the perturbation solution of a Hamiltonian system represented by the HamiltonianK=Y·g(y, t; ɛ) which is linear in the adjoint vectorY. This Hamiltonization allows the direct use of the perturbation methods already established for Hamiltonian systems. To demonstrate this fact, a Hamiltonian algorithm developed by this author and based on the Lie-Deprit transform is applied to the Hamiltonized system and is shown to be equivalent to the application of the non-Hamiltonian form of this same algorithm to the original non-Hamiltonian system.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N522d3f278d1b49cc8c7f9f79e19915be
19 Nd7189bef9efb4da6a763daa255955357
20 sg:journal.1136436
21 schema:name Lie transforms and the Hamiltonization of non-Hamiltonian systems
22 schema:pagination 397-405
23 schema:productId N1ee5a0c8546f41568657e7662c41dcc0
24 N7b6c30d6d4c74927a361c358ccc0f3c6
25 Neda91583537445b2b94a3cab37a27951
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033513942
27 https://doi.org/10.1007/bf01231400
28 schema:sdDatePublished 2019-04-11T13:29
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N2120916361794d9f9599d75a2ecdd484
31 schema:url http://link.springer.com/10.1007/BF01231400
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N1ee5a0c8546f41568657e7662c41dcc0 schema:name doi
36 schema:value 10.1007/bf01231400
37 rdf:type schema:PropertyValue
38 N2120916361794d9f9599d75a2ecdd484 schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N48c74bb00539410b84b1b9b86f0797c2 rdf:first sg:person.013345305565.30
41 rdf:rest rdf:nil
42 N522d3f278d1b49cc8c7f9f79e19915be schema:volumeNumber 4
43 rdf:type schema:PublicationVolume
44 N7b6c30d6d4c74927a361c358ccc0f3c6 schema:name dimensions_id
45 schema:value pub.1033513942
46 rdf:type schema:PropertyValue
47 Nd7189bef9efb4da6a763daa255955357 schema:issueNumber 3-4
48 rdf:type schema:PublicationIssue
49 Neda91583537445b2b94a3cab37a27951 schema:name readcube_id
50 schema:value 9fa6d8dffd30135f242fd76723a7a71e373b759b405fa1983dfdf9d0931d9de5
51 rdf:type schema:PropertyValue
52 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
53 schema:name Mathematical Sciences
54 rdf:type schema:DefinedTerm
55 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
56 schema:name Numerical and Computational Mathematics
57 rdf:type schema:DefinedTerm
58 sg:journal.1136436 schema:issn 0008-8714
59 0923-2958
60 schema:name Celestial Mechanics and Dynamical Astronomy
61 rdf:type schema:Periodical
62 sg:person.013345305565.30 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
63 schema:familyName Kamel
64 schema:givenName Ahmed Aly
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013345305565.30
66 rdf:type schema:Person
67 sg:pub.10.1007/bf01228838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042537547
68 https://doi.org/10.1007/bf01228838
69 rdf:type schema:CreativeWork
70 sg:pub.10.1007/bf01230434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028683382
71 https://doi.org/10.1007/bf01230434
72 rdf:type schema:CreativeWork
73 sg:pub.10.1007/bf01230435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016915999
74 https://doi.org/10.1007/bf01230435
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/bf01230436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013740596
77 https://doi.org/10.1007/bf01230436
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/bf01230455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013280863
80 https://doi.org/10.1007/bf01230455
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/bf01230629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028918192
83 https://doi.org/10.1007/bf01230629
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/bf01231807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018415827
86 https://doi.org/10.1007/bf01231807
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bf01625278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053688354
89 https://doi.org/10.1007/bf01625278
90 rdf:type schema:CreativeWork
91 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
92 schema:name Dept. of Aeronautics and Astronautics, Stanford University, Stanford, Calif., USA
93 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...