The ideal resonance problem, a comparison of two formal solutions, II View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1985-10

AUTHORS

Alan H. Jupp, Ali Y. Abdulla

ABSTRACT

This paper is a sequel to an earlier article of the same title. The two formal analytical solutions of the Ideal Resonance Problem developed respectively by Garfinkel and Jupp are here compared, atsecond-order in the appropriate small parameter, with numerical integrations; the second-order circulation solution for Jupp's theory being presented for the first time. It transpires that throughout most of the deep resonance regime the second-mentioned solution provides greater accuracy. In addition, it is demonstrated that the first solution is not appropriate when general initial values of the variables are prescribed. More... »

PAGES

183-197

References to SciGraph publications

  • 1984-09. The ideal resonance problem a comparison of two formal solutions I in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1982-04. A comparison of the Bohlin-von Zeipel and Bohlin-Lie series methods in resonant systems in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1972-01. A second-order solution of the Ideal Resonance Problem by Lie series in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1974-03. A second-order global solution of the ideal resonance problem in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01230927

    DOI

    http://dx.doi.org/10.1007/bf01230927

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1031305322


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Applied Mathematics and Theoretical Physics, University of Liverpool, P.O. Box 147, L69 3BX, Liverpool", 
              "id": "http://www.grid.ac/institutes/grid.10025.36", 
              "name": [
                "Department of Applied Mathematics and Theoretical Physics, University of Liverpool, P.O. Box 147, L69 3BX, Liverpool"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jupp", 
            "givenName": "Alan H.", 
            "id": "sg:person.07420122720.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07420122720.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of General Sciences, Military Technical College, P.O. Box 478, Baghdad, Iraq", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of General Sciences, Military Technical College, P.O. Box 478, Baghdad, Iraq"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abdulla", 
            "givenName": "Ali Y.", 
            "id": "sg:person.012220574315.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012220574315.12"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01230421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002947958", 
              "https://doi.org/10.1007/bf01230421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01235818", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015678959", 
              "https://doi.org/10.1007/bf01235818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01227819", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013346507", 
              "https://doi.org/10.1007/bf01227819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01236167", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047634101", 
              "https://doi.org/10.1007/bf01236167"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1985-10", 
        "datePublishedReg": "1985-10-01", 
        "description": "This paper is a sequel to an earlier article of the same title. The two formal analytical solutions of the Ideal Resonance Problem developed respectively by Garfinkel and Jupp are here compared, atsecond-order in the appropriate small parameter, with numerical integrations; the second-order circulation solution for Jupp's theory being presented for the first time. It transpires that throughout most of the deep resonance regime the second-mentioned solution provides greater accuracy. In addition, it is demonstrated that the first solution is not appropriate when general initial values of the variables are prescribed.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01230927", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136436", 
            "issn": [
              "0008-8714", 
              "0923-2958"
            ], 
            "name": "Celestial Mechanics and Dynamical Astronomy", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "37"
          }
        ], 
        "keywords": [
          "resonance problem", 
          "formal analytical solution", 
          "analytical solution", 
          "circulation solutions", 
          "solution", 
          "small parameter", 
          "numerical integration", 
          "resonance regime", 
          "greater accuracy", 
          "first solution", 
          "initial value", 
          "problem", 
          "parameters", 
          "integration", 
          "first time", 
          "regime", 
          "accuracy", 
          "formal solution", 
          "appropriate small parameter", 
          "theory", 
          "comparison", 
          "time", 
          "addition", 
          "values", 
          "Jupp", 
          "variables", 
          "article", 
          "same title", 
          "Ideal Resonance Problem", 
          "sequel", 
          "earlier article", 
          "title", 
          "paper", 
          "Garfinkel", 
          "general initial values", 
          "second-order circulation solution", 
          "Jupp's theory", 
          "deep resonance regime"
        ], 
        "name": "The ideal resonance problem, a comparison of two formal solutions, II", 
        "pagination": "183-197", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1031305322"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01230927"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01230927", 
          "https://app.dimensions.ai/details/publication/pub.1031305322"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_197.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01230927"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01230927'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01230927'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01230927'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01230927'


     

    This table displays all metadata directly associated to this object as RDF triples.

    122 TRIPLES      22 PREDICATES      67 URIs      55 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01230927 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N8c18f69d796349119265a8107c2dd3b8
    4 schema:citation sg:pub.10.1007/bf01227819
    5 sg:pub.10.1007/bf01230421
    6 sg:pub.10.1007/bf01235818
    7 sg:pub.10.1007/bf01236167
    8 schema:datePublished 1985-10
    9 schema:datePublishedReg 1985-10-01
    10 schema:description This paper is a sequel to an earlier article of the same title. The two formal analytical solutions of the Ideal Resonance Problem developed respectively by Garfinkel and Jupp are here compared, atsecond-order in the appropriate small parameter, with numerical integrations; the second-order circulation solution for Jupp's theory being presented for the first time. It transpires that throughout most of the deep resonance regime the second-mentioned solution provides greater accuracy. In addition, it is demonstrated that the first solution is not appropriate when general initial values of the variables are prescribed.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N27a74fb9c987419ba5cdfb3f84511619
    15 Ne5e368ccdfa94af992520a45ab72e4d0
    16 sg:journal.1136436
    17 schema:keywords Garfinkel
    18 Ideal Resonance Problem
    19 Jupp
    20 Jupp's theory
    21 accuracy
    22 addition
    23 analytical solution
    24 appropriate small parameter
    25 article
    26 circulation solutions
    27 comparison
    28 deep resonance regime
    29 earlier article
    30 first solution
    31 first time
    32 formal analytical solution
    33 formal solution
    34 general initial values
    35 greater accuracy
    36 initial value
    37 integration
    38 numerical integration
    39 paper
    40 parameters
    41 problem
    42 regime
    43 resonance problem
    44 resonance regime
    45 same title
    46 second-order circulation solution
    47 sequel
    48 small parameter
    49 solution
    50 theory
    51 time
    52 title
    53 values
    54 variables
    55 schema:name The ideal resonance problem, a comparison of two formal solutions, II
    56 schema:pagination 183-197
    57 schema:productId N7d7549a3de874bec85434b262f6c0ddc
    58 N89c1f310b3dc472e9a52a57de75c6a4f
    59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031305322
    60 https://doi.org/10.1007/bf01230927
    61 schema:sdDatePublished 2022-01-01T18:03
    62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    63 schema:sdPublisher N78bfe007b8454648bfe352b2faa48ba6
    64 schema:url https://doi.org/10.1007/bf01230927
    65 sgo:license sg:explorer/license/
    66 sgo:sdDataset articles
    67 rdf:type schema:ScholarlyArticle
    68 N27a74fb9c987419ba5cdfb3f84511619 schema:issueNumber 2
    69 rdf:type schema:PublicationIssue
    70 N78bfe007b8454648bfe352b2faa48ba6 schema:name Springer Nature - SN SciGraph project
    71 rdf:type schema:Organization
    72 N7d7549a3de874bec85434b262f6c0ddc schema:name dimensions_id
    73 schema:value pub.1031305322
    74 rdf:type schema:PropertyValue
    75 N86a3ce087e99471fb839345b91fb2ae9 rdf:first sg:person.012220574315.12
    76 rdf:rest rdf:nil
    77 N89c1f310b3dc472e9a52a57de75c6a4f schema:name doi
    78 schema:value 10.1007/bf01230927
    79 rdf:type schema:PropertyValue
    80 N8c18f69d796349119265a8107c2dd3b8 rdf:first sg:person.07420122720.37
    81 rdf:rest N86a3ce087e99471fb839345b91fb2ae9
    82 Ne5e368ccdfa94af992520a45ab72e4d0 schema:volumeNumber 37
    83 rdf:type schema:PublicationVolume
    84 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Mathematical Sciences
    86 rdf:type schema:DefinedTerm
    87 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Applied Mathematics
    89 rdf:type schema:DefinedTerm
    90 sg:journal.1136436 schema:issn 0008-8714
    91 0923-2958
    92 schema:name Celestial Mechanics and Dynamical Astronomy
    93 schema:publisher Springer Nature
    94 rdf:type schema:Periodical
    95 sg:person.012220574315.12 schema:affiliation grid-institutes:None
    96 schema:familyName Abdulla
    97 schema:givenName Ali Y.
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012220574315.12
    99 rdf:type schema:Person
    100 sg:person.07420122720.37 schema:affiliation grid-institutes:grid.10025.36
    101 schema:familyName Jupp
    102 schema:givenName Alan H.
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07420122720.37
    104 rdf:type schema:Person
    105 sg:pub.10.1007/bf01227819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013346507
    106 https://doi.org/10.1007/bf01227819
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/bf01230421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002947958
    109 https://doi.org/10.1007/bf01230421
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/bf01235818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015678959
    112 https://doi.org/10.1007/bf01235818
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/bf01236167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047634101
    115 https://doi.org/10.1007/bf01236167
    116 rdf:type schema:CreativeWork
    117 grid-institutes:None schema:alternateName Department of General Sciences, Military Technical College, P.O. Box 478, Baghdad, Iraq
    118 schema:name Department of General Sciences, Military Technical College, P.O. Box 478, Baghdad, Iraq
    119 rdf:type schema:Organization
    120 grid-institutes:grid.10025.36 schema:alternateName Department of Applied Mathematics and Theoretical Physics, University of Liverpool, P.O. Box 147, L69 3BX, Liverpool
    121 schema:name Department of Applied Mathematics and Theoretical Physics, University of Liverpool, P.O. Box 147, L69 3BX, Liverpool
    122 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...