Canonical transformations depending on a small parameter View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1969-03

AUTHORS

André Deprit

ABSTRACT

The concept of a Lie series is enlarged to encompass the cases where the generating function itself depends explicity on the small parameter. Lie transforms define naturally a class of canonical mappings in the form of power series in the small parameter. The formalism generates nonconservative as well as conservative transformations. Perturbation theories based on it offer three substantial advantages: they yield the transformation of state variables in an explicit form; in a function of the original variables, substitution of the new variables consists simply of an iterative procedure involving only explicit chains of Poisson brackets; the inverse transformation can be built the same way. More... »

PAGES

12-30

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01230629

DOI

http://dx.doi.org/10.1007/bf01230629

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028918192


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Boeing Scientific Research Laboratories, Seattle, Wash, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deprit", 
        "givenName": "Andr\u00e9", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0019-1035(67)90032-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000065078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0019-1035(67)90032-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000065078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-4916(69)90135-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025770739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-88412-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035967194", 
          "https://doi.org/10.1007/978-3-642-88412-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-88412-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035967194", 
          "https://doi.org/10.1007/978-3-642-88412-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/108689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058447372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/109180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058447825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/110406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058448992"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1969-03", 
    "datePublishedReg": "1969-03-01", 
    "description": "The concept of a Lie series is enlarged to encompass the cases where the generating function itself depends explicity on the small parameter. Lie transforms define naturally a class of canonical mappings in the form of power series in the small parameter. The formalism generates nonconservative as well as conservative transformations. Perturbation theories based on it offer three substantial advantages: they yield the transformation of state variables in an explicit form; in a function of the original variables, substitution of the new variables consists simply of an iterative procedure involving only explicit chains of Poisson brackets; the inverse transformation can be built the same way.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01230629", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136436", 
        "issn": [
          "0008-8714", 
          "0923-2958"
        ], 
        "name": "Celestial Mechanics and Dynamical Astronomy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "Canonical transformations depending on a small parameter", 
    "pagination": "12-30", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "89c268e8fbc938a3bdf2de6d6edb1a743bf745fab77ad0a5d07d3a1811a01c14"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01230629"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028918192"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01230629", 
      "https://app.dimensions.ai/details/publication/pub.1028918192"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46766_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01230629"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01230629'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01230629'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01230629'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01230629'


 

This table displays all metadata directly associated to this object as RDF triples.

78 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01230629 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3ecd2f568daf4b6c8e98c5b4d449d18e
4 schema:citation sg:pub.10.1007/978-3-642-88412-2
5 https://doi.org/10.1016/0003-4916(69)90135-3
6 https://doi.org/10.1016/0019-1035(67)90032-2
7 https://doi.org/10.1086/108689
8 https://doi.org/10.1086/109180
9 https://doi.org/10.1086/110406
10 schema:datePublished 1969-03
11 schema:datePublishedReg 1969-03-01
12 schema:description The concept of a Lie series is enlarged to encompass the cases where the generating function itself depends explicity on the small parameter. Lie transforms define naturally a class of canonical mappings in the form of power series in the small parameter. The formalism generates nonconservative as well as conservative transformations. Perturbation theories based on it offer three substantial advantages: they yield the transformation of state variables in an explicit form; in a function of the original variables, substitution of the new variables consists simply of an iterative procedure involving only explicit chains of Poisson brackets; the inverse transformation can be built the same way.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N37d00913dcbe406b888b448f565a3b5f
17 N92fa471004d348dd84badc3e3c2a57ee
18 sg:journal.1136436
19 schema:name Canonical transformations depending on a small parameter
20 schema:pagination 12-30
21 schema:productId N6c428b72227c4d3da8c13c77d7c465e8
22 N6ef6b98b396841e0a5d77cb027af46a2
23 Nfe4f07580df843c2aa8fb09fa4446d13
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028918192
25 https://doi.org/10.1007/bf01230629
26 schema:sdDatePublished 2019-04-11T13:33
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N66308fe4340b4123a6466ec88b556fb0
29 schema:url http://link.springer.com/10.1007/BF01230629
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N37d00913dcbe406b888b448f565a3b5f schema:volumeNumber 1
34 rdf:type schema:PublicationVolume
35 N3ecd2f568daf4b6c8e98c5b4d449d18e rdf:first N608c5409722c4beb8c92db95159f5cf7
36 rdf:rest rdf:nil
37 N608c5409722c4beb8c92db95159f5cf7 schema:affiliation N91bfb9317603451a9550e611b742cbd1
38 schema:familyName Deprit
39 schema:givenName André
40 rdf:type schema:Person
41 N66308fe4340b4123a6466ec88b556fb0 schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N6c428b72227c4d3da8c13c77d7c465e8 schema:name readcube_id
44 schema:value 89c268e8fbc938a3bdf2de6d6edb1a743bf745fab77ad0a5d07d3a1811a01c14
45 rdf:type schema:PropertyValue
46 N6ef6b98b396841e0a5d77cb027af46a2 schema:name doi
47 schema:value 10.1007/bf01230629
48 rdf:type schema:PropertyValue
49 N91bfb9317603451a9550e611b742cbd1 schema:name Boeing Scientific Research Laboratories, Seattle, Wash, USA
50 rdf:type schema:Organization
51 N92fa471004d348dd84badc3e3c2a57ee schema:issueNumber 1
52 rdf:type schema:PublicationIssue
53 Nfe4f07580df843c2aa8fb09fa4446d13 schema:name dimensions_id
54 schema:value pub.1028918192
55 rdf:type schema:PropertyValue
56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
57 schema:name Mathematical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
60 schema:name Pure Mathematics
61 rdf:type schema:DefinedTerm
62 sg:journal.1136436 schema:issn 0008-8714
63 0923-2958
64 schema:name Celestial Mechanics and Dynamical Astronomy
65 rdf:type schema:Periodical
66 sg:pub.10.1007/978-3-642-88412-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035967194
67 https://doi.org/10.1007/978-3-642-88412-2
68 rdf:type schema:CreativeWork
69 https://doi.org/10.1016/0003-4916(69)90135-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025770739
70 rdf:type schema:CreativeWork
71 https://doi.org/10.1016/0019-1035(67)90032-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000065078
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1086/108689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058447372
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1086/109180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058447825
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1086/110406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058448992
78 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...