1970-03
AUTHORS ABSTRACTKamel has recently extended to non-Hamiltonian equations a perturbation theory using Lie transforms. We show here how Kamel's extension can be approached from an intrinsic viewpoint, which reformulation leads to a simpler algorithm. Then we complete Kamel's contribution by establishing the rules for inverting the transformation generated by the perturbation theory, and for composing two such transformations. More... »
PAGES107-120
http://scigraph.springernature.com/pub.10.1007/bf01230436
DOIhttp://dx.doi.org/10.1007/bf01230436
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1013740596
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"name": [
"Mathematics Research Laboratory, Boeing Scientific Research Laboratories, Seattle, Wash., U.S.A."
],
"type": "Organization"
},
"familyName": "Henrard",
"givenName": "Jacques",
"id": "sg:person.07540542307.45",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07540542307.45"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01230435",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016915999",
"https://doi.org/10.1007/bf01230435"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01230435",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016915999",
"https://doi.org/10.1007/bf01230435"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01230629",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028918192",
"https://doi.org/10.1007/bf01230629"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01230629",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028918192",
"https://doi.org/10.1007/bf01230629"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01228842",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030762838",
"https://doi.org/10.1007/bf01228842"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01228842",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030762838",
"https://doi.org/10.1007/bf01228842"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01228838",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042537547",
"https://doi.org/10.1007/bf01228838"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01228838",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042537547",
"https://doi.org/10.1007/bf01228838"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/1969262",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069674653"
],
"type": "CreativeWork"
}
],
"datePublished": "1970-03",
"datePublishedReg": "1970-03-01",
"description": "Kamel has recently extended to non-Hamiltonian equations a perturbation theory using Lie transforms. We show here how Kamel's extension can be approached from an intrinsic viewpoint, which reformulation leads to a simpler algorithm. Then we complete Kamel's contribution by establishing the rules for inverting the transformation generated by the perturbation theory, and for composing two such transformations.",
"genre": "research_article",
"id": "sg:pub.10.1007/bf01230436",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136436",
"issn": [
"0008-8714",
"0923-2958"
],
"name": "Celestial Mechanics and Dynamical Astronomy",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "3"
}
],
"name": "On a perturbation theory using Lie transforms",
"pagination": "107-120",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"41753423763f4137e935ae5dfa2d696975128b60c4d6a410e897ccc82b03bc52"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf01230436"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1013740596"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf01230436",
"https://app.dimensions.ai/details/publication/pub.1013740596"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T13:29",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46747_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007/BF01230436"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01230436'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01230436'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01230436'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01230436'
This table displays all metadata directly associated to this object as RDF triples.
79 TRIPLES
21 PREDICATES
32 URIs
19 LITERALS
7 BLANK NODES