Perturbation method in the theory of nonlinear oscillations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1970-03

AUTHORS

Ahmed Aly Kamel

ABSTRACT

Asymptotic recurrence formulas for treating nonlinear oscillation problems are presented. These formulas are based on a Lie transform similar to that described by Deprit for Hamiltonian systems. It is shown that the basic formulas have essentially the same forms as those obtained by Deprit and by the present author in the Hamiltonian case. More... »

PAGES

90-106

References to SciGraph publications

  • 1969-03. Canonical transformations depending on a small parameter in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1969-06. Expansion formulae in canonical transformations depending on a small parameter in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1967-09. Asymptotic representation of the cycle of Van der Pol's equation for small damping coefficients in ZEITSCHRIFT FÜR ANGEWANDTE MATHEMATIK UND PHYSIK
  • 1970-03. On a perturbation theory using Lie transforms in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01230435

    DOI

    http://dx.doi.org/10.1007/bf01230435

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1016915999


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Dept. of Aeronautics and Astronautics, Stanford University, Stanford, Calif., U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aly Kamel", 
            "givenName": "Ahmed", 
            "id": "sg:person.013345305565.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013345305565.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01230436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013740596", 
              "https://doi.org/10.1007/bf01230436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013740596", 
              "https://doi.org/10.1007/bf01230436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01602044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019962942", 
              "https://doi.org/10.1007/bf01602044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01602044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019962942", 
              "https://doi.org/10.1007/bf01602044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-4916(63)90076-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022761867"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230629", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028918192", 
              "https://doi.org/10.1007/bf01230629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230629", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028918192", 
              "https://doi.org/10.1007/bf01230629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01228838", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042537547", 
              "https://doi.org/10.1007/bf01228838"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01228838", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042537547", 
              "https://doi.org/10.1007/bf01228838"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1970-03", 
        "datePublishedReg": "1970-03-01", 
        "description": "Asymptotic recurrence formulas for treating nonlinear oscillation problems are presented. These formulas are based on a Lie transform similar to that described by Deprit for Hamiltonian systems. It is shown that the basic formulas have essentially the same forms as those obtained by Deprit and by the present author in the Hamiltonian case.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01230435", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136436", 
            "issn": [
              "0008-8714", 
              "0923-2958"
            ], 
            "name": "Celestial Mechanics and Dynamical Astronomy", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "name": "Perturbation method in the theory of nonlinear oscillations", 
        "pagination": "90-106", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5098962c58954a7ac7e23b478982e4fe792a7799a19d11b0100c1a38dbb0af4d"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01230435"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1016915999"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01230435", 
          "https://app.dimensions.ai/details/publication/pub.1016915999"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:32", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46760_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01230435"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01230435'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01230435'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01230435'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01230435'


     

    This table displays all metadata directly associated to this object as RDF triples.

    80 TRIPLES      21 PREDICATES      32 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01230435 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N9c044c870c91494d82c92d77bee0ff22
    4 schema:citation sg:pub.10.1007/bf01228838
    5 sg:pub.10.1007/bf01230436
    6 sg:pub.10.1007/bf01230629
    7 sg:pub.10.1007/bf01602044
    8 https://doi.org/10.1016/0003-4916(63)90076-9
    9 schema:datePublished 1970-03
    10 schema:datePublishedReg 1970-03-01
    11 schema:description Asymptotic recurrence formulas for treating nonlinear oscillation problems are presented. These formulas are based on a Lie transform similar to that described by Deprit for Hamiltonian systems. It is shown that the basic formulas have essentially the same forms as those obtained by Deprit and by the present author in the Hamiltonian case.
    12 schema:genre research_article
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf N422a8db3fe9141cea8c1d94ac9495e05
    16 Ne6a345f7c62148f4a796689fc862b666
    17 sg:journal.1136436
    18 schema:name Perturbation method in the theory of nonlinear oscillations
    19 schema:pagination 90-106
    20 schema:productId N17f20021f09a406b83c3a94735624b5b
    21 N61faebae252b490e9a3c1fdaae2e6ddb
    22 Nb42de74b06af4d3980b2084014c0b0a3
    23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016915999
    24 https://doi.org/10.1007/bf01230435
    25 schema:sdDatePublished 2019-04-11T13:32
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher Nfccce656de7442c1bc9d65e0265a8554
    28 schema:url http://link.springer.com/10.1007/BF01230435
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset articles
    31 rdf:type schema:ScholarlyArticle
    32 N17f20021f09a406b83c3a94735624b5b schema:name doi
    33 schema:value 10.1007/bf01230435
    34 rdf:type schema:PropertyValue
    35 N422a8db3fe9141cea8c1d94ac9495e05 schema:volumeNumber 3
    36 rdf:type schema:PublicationVolume
    37 N61faebae252b490e9a3c1fdaae2e6ddb schema:name dimensions_id
    38 schema:value pub.1016915999
    39 rdf:type schema:PropertyValue
    40 N9c044c870c91494d82c92d77bee0ff22 rdf:first sg:person.013345305565.30
    41 rdf:rest rdf:nil
    42 Nb42de74b06af4d3980b2084014c0b0a3 schema:name readcube_id
    43 schema:value 5098962c58954a7ac7e23b478982e4fe792a7799a19d11b0100c1a38dbb0af4d
    44 rdf:type schema:PropertyValue
    45 Ne6a345f7c62148f4a796689fc862b666 schema:issueNumber 1
    46 rdf:type schema:PublicationIssue
    47 Nfccce656de7442c1bc9d65e0265a8554 schema:name Springer Nature - SN SciGraph project
    48 rdf:type schema:Organization
    49 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    50 schema:name Mathematical Sciences
    51 rdf:type schema:DefinedTerm
    52 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    53 schema:name Numerical and Computational Mathematics
    54 rdf:type schema:DefinedTerm
    55 sg:journal.1136436 schema:issn 0008-8714
    56 0923-2958
    57 schema:name Celestial Mechanics and Dynamical Astronomy
    58 rdf:type schema:Periodical
    59 sg:person.013345305565.30 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    60 schema:familyName Aly Kamel
    61 schema:givenName Ahmed
    62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013345305565.30
    63 rdf:type schema:Person
    64 sg:pub.10.1007/bf01228838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042537547
    65 https://doi.org/10.1007/bf01228838
    66 rdf:type schema:CreativeWork
    67 sg:pub.10.1007/bf01230436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013740596
    68 https://doi.org/10.1007/bf01230436
    69 rdf:type schema:CreativeWork
    70 sg:pub.10.1007/bf01230629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028918192
    71 https://doi.org/10.1007/bf01230629
    72 rdf:type schema:CreativeWork
    73 sg:pub.10.1007/bf01602044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019962942
    74 https://doi.org/10.1007/bf01602044
    75 rdf:type schema:CreativeWork
    76 https://doi.org/10.1016/0003-4916(63)90076-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022761867
    77 rdf:type schema:CreativeWork
    78 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
    79 schema:name Dept. of Aeronautics and Astronautics, Stanford University, Stanford, Calif., U.S.A.
    80 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...