A new algorithm for the Lie transformation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1970-03

AUTHORS

William A. Mersman

ABSTRACT

Following Hori, the Lie transformation is presented in a form that is independent of any extraneous parameters. The transformation is canonical, and its inverse is obtained by changing the sign of the generating function. The introduction of a small parameter into the generating function and the Hamiltonian then yields a recursive, triangular algorithm. The case of a Hamiltonian containing the time explicitly is included by adjoining an additional pair of conjugate variables. The necessary and sufficient condition that this transformation be identical to Deprit's transformation is given as a recursive relation between successive terms in the generating functions. Explicit formulas are obtained through the sixth order. More... »

PAGES

81-89

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01230434

DOI

http://dx.doi.org/10.1007/bf01230434

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028683382


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1608", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Sociology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/16", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Studies in Human Society", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ames Research Center", 
          "id": "https://www.grid.ac/institutes/grid.419075.e", 
          "name": [
            "NASA Ames Research Center, Moffett Field, Calif., U.S.A."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mersman", 
        "givenName": "William A.", 
        "id": "sg:person.015771402671.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771402671.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-94-010-3323-7_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002619126", 
          "https://doi.org/10.1007/978-94-010-3323-7_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01230629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028918192", 
          "https://doi.org/10.1007/bf01230629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01230629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028918192", 
          "https://doi.org/10.1007/bf01230629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01228838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042537547", 
          "https://doi.org/10.1007/bf01228838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01228838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042537547", 
          "https://doi.org/10.1007/bf01228838"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1970-03", 
    "datePublishedReg": "1970-03-01", 
    "description": "Following Hori, the Lie transformation is presented in a form that is independent of any extraneous parameters. The transformation is canonical, and its inverse is obtained by changing the sign of the generating function. The introduction of a small parameter into the generating function and the Hamiltonian then yields a recursive, triangular algorithm. The case of a Hamiltonian containing the time explicitly is included by adjoining an additional pair of conjugate variables. The necessary and sufficient condition that this transformation be identical to Deprit's transformation is given as a recursive relation between successive terms in the generating functions. Explicit formulas are obtained through the sixth order.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01230434", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136436", 
        "issn": [
          "0008-8714", 
          "0923-2958"
        ], 
        "name": "Celestial Mechanics and Dynamical Astronomy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "name": "A new algorithm for the Lie transformation", 
    "pagination": "81-89", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "88a38f7d33f828db17636940c38189baf750102dce9b50d0b4969ee1b8ef4e8f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01230434"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028683382"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01230434", 
      "https://app.dimensions.ai/details/publication/pub.1028683382"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46766_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01230434"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01230434'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01230434'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01230434'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01230434'


 

This table displays all metadata directly associated to this object as RDF triples.

73 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01230434 schema:about anzsrc-for:16
2 anzsrc-for:1608
3 schema:author Na0f25f33b7c649f5ab480d523b1a2c38
4 schema:citation sg:pub.10.1007/978-94-010-3323-7_21
5 sg:pub.10.1007/bf01228838
6 sg:pub.10.1007/bf01230629
7 schema:datePublished 1970-03
8 schema:datePublishedReg 1970-03-01
9 schema:description Following Hori, the Lie transformation is presented in a form that is independent of any extraneous parameters. The transformation is canonical, and its inverse is obtained by changing the sign of the generating function. The introduction of a small parameter into the generating function and the Hamiltonian then yields a recursive, triangular algorithm. The case of a Hamiltonian containing the time explicitly is included by adjoining an additional pair of conjugate variables. The necessary and sufficient condition that this transformation be identical to Deprit's transformation is given as a recursive relation between successive terms in the generating functions. Explicit formulas are obtained through the sixth order.
10 schema:genre research_article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N576f5cf184dc4bc7ac551ada5bb2766c
14 Nf1d7630551634af5a94e5fbde16e6074
15 sg:journal.1136436
16 schema:name A new algorithm for the Lie transformation
17 schema:pagination 81-89
18 schema:productId N831de7da3cb84048958d90d7c3b1bc97
19 N8a38aa6fc348427c8d6a93865a576e99
20 Ne1611bed915b4e34a3c813ea623b0a7a
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028683382
22 https://doi.org/10.1007/bf01230434
23 schema:sdDatePublished 2019-04-11T13:33
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher N4d9047fb84f44a2db3eedd30f5e93224
26 schema:url http://link.springer.com/10.1007/BF01230434
27 sgo:license sg:explorer/license/
28 sgo:sdDataset articles
29 rdf:type schema:ScholarlyArticle
30 N4d9047fb84f44a2db3eedd30f5e93224 schema:name Springer Nature - SN SciGraph project
31 rdf:type schema:Organization
32 N576f5cf184dc4bc7ac551ada5bb2766c schema:volumeNumber 3
33 rdf:type schema:PublicationVolume
34 N831de7da3cb84048958d90d7c3b1bc97 schema:name readcube_id
35 schema:value 88a38f7d33f828db17636940c38189baf750102dce9b50d0b4969ee1b8ef4e8f
36 rdf:type schema:PropertyValue
37 N8a38aa6fc348427c8d6a93865a576e99 schema:name dimensions_id
38 schema:value pub.1028683382
39 rdf:type schema:PropertyValue
40 Na0f25f33b7c649f5ab480d523b1a2c38 rdf:first sg:person.015771402671.17
41 rdf:rest rdf:nil
42 Ne1611bed915b4e34a3c813ea623b0a7a schema:name doi
43 schema:value 10.1007/bf01230434
44 rdf:type schema:PropertyValue
45 Nf1d7630551634af5a94e5fbde16e6074 schema:issueNumber 1
46 rdf:type schema:PublicationIssue
47 anzsrc-for:16 schema:inDefinedTermSet anzsrc-for:
48 schema:name Studies in Human Society
49 rdf:type schema:DefinedTerm
50 anzsrc-for:1608 schema:inDefinedTermSet anzsrc-for:
51 schema:name Sociology
52 rdf:type schema:DefinedTerm
53 sg:journal.1136436 schema:issn 0008-8714
54 0923-2958
55 schema:name Celestial Mechanics and Dynamical Astronomy
56 rdf:type schema:Periodical
57 sg:person.015771402671.17 schema:affiliation https://www.grid.ac/institutes/grid.419075.e
58 schema:familyName Mersman
59 schema:givenName William A.
60 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771402671.17
61 rdf:type schema:Person
62 sg:pub.10.1007/978-94-010-3323-7_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002619126
63 https://doi.org/10.1007/978-94-010-3323-7_21
64 rdf:type schema:CreativeWork
65 sg:pub.10.1007/bf01228838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042537547
66 https://doi.org/10.1007/bf01228838
67 rdf:type schema:CreativeWork
68 sg:pub.10.1007/bf01230629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028918192
69 https://doi.org/10.1007/bf01230629
70 rdf:type schema:CreativeWork
71 https://www.grid.ac/institutes/grid.419075.e schema:alternateName Ames Research Center
72 schema:name NASA Ames Research Center, Moffett Field, Calif., U.S.A.
73 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...