On Poincaré's second species solutions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1980-01

AUTHORS

Jacques Henrard

ABSTRACT

A proof of the existence of Poincaré's second species solution in the restricted three body problem is given. It is not based, as Perko's and Guillaume's work, on singular perturbation and asymptotic approximation but rather on topological equivalence between differential systems in the neighborhood of an equilibrium.

PAGES

83-97

References to SciGraph publications

  • 1975-12. The restricted problem: An extension of Breakwell-Perko's matching theory in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1975-03. Linear analysis of one type of second species solutions in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1974-07. Normal forms for Hamiltonian systems in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1973-06. Proof of a conjecture of E. Strömgren in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01230250

    DOI

    http://dx.doi.org/10.1007/bf01230250

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1000234961


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Namur", 
              "id": "https://www.grid.ac/institutes/grid.6520.1", 
              "name": [
                "Department of Mathematics, Facult\u00e9s Universitaires de Namur, Rempart de la Vierge 8, B-5000, Namur, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Henrard", 
            "givenName": "Jacques", 
            "id": "sg:person.012411554565.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012411554565.81"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01650284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003689019", 
              "https://doi.org/10.1007/bf01650284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01650284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003689019", 
              "https://doi.org/10.1007/bf01650284"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2514/3.2761", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009482714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01227510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012283648", 
              "https://doi.org/10.1007/bf01227510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01227510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012283648", 
              "https://doi.org/10.1007/bf01227510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230546", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019073723", 
              "https://doi.org/10.1007/bf01230546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230546", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019073723", 
              "https://doi.org/10.1007/bf01230546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2514/3.1516", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030884967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01329333", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032390147", 
              "https://doi.org/10.1007/bf01329333"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1980-01", 
        "datePublishedReg": "1980-01-01", 
        "description": "A proof of the existence of Poincar\u00e9's second species solution in the restricted three body problem is given. It is not based, as Perko's and Guillaume's work, on singular perturbation and asymptotic approximation but rather on topological equivalence between differential systems in the neighborhood of an equilibrium.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01230250", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136436", 
            "issn": [
              "0008-8714", 
              "0923-2958"
            ], 
            "name": "Celestial Mechanics and Dynamical Astronomy", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "21"
          }
        ], 
        "name": "On Poincar\u00e9's second species solutions", 
        "pagination": "83-97", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "011dd96f460a5045f4bada6811df4ad143c9dc1ace1c75fdbc3399c7d5897f22"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01230250"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1000234961"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01230250", 
          "https://app.dimensions.ai/details/publication/pub.1000234961"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46757_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01230250"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01230250'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01230250'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01230250'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01230250'


     

    This table displays all metadata directly associated to this object as RDF triples.

    83 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01230250 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author Nc32f8c8574834a3ca3526e79aa66e7e1
    4 schema:citation sg:pub.10.1007/bf01227510
    5 sg:pub.10.1007/bf01230546
    6 sg:pub.10.1007/bf01329333
    7 sg:pub.10.1007/bf01650284
    8 https://doi.org/10.2514/3.1516
    9 https://doi.org/10.2514/3.2761
    10 schema:datePublished 1980-01
    11 schema:datePublishedReg 1980-01-01
    12 schema:description A proof of the existence of Poincaré's second species solution in the restricted three body problem is given. It is not based, as Perko's and Guillaume's work, on singular perturbation and asymptotic approximation but rather on topological equivalence between differential systems in the neighborhood of an equilibrium.
    13 schema:genre research_article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf Nccdb1df7578d47cb904a85ddc028b1f0
    17 Nf359770a2b7a4f51b819f1d51ba995e2
    18 sg:journal.1136436
    19 schema:name On Poincaré's second species solutions
    20 schema:pagination 83-97
    21 schema:productId N01427ab7ebcb4dd0a6d8968ee7a77fc5
    22 N09421c5a16b5401a95749efd6f4c58a7
    23 Ncfbe2d630f384b38a1a952a2b16be70c
    24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000234961
    25 https://doi.org/10.1007/bf01230250
    26 schema:sdDatePublished 2019-04-11T13:31
    27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    28 schema:sdPublisher N87334616ed50491aa160a9047e8ebcb7
    29 schema:url http://link.springer.com/10.1007/BF01230250
    30 sgo:license sg:explorer/license/
    31 sgo:sdDataset articles
    32 rdf:type schema:ScholarlyArticle
    33 N01427ab7ebcb4dd0a6d8968ee7a77fc5 schema:name dimensions_id
    34 schema:value pub.1000234961
    35 rdf:type schema:PropertyValue
    36 N09421c5a16b5401a95749efd6f4c58a7 schema:name doi
    37 schema:value 10.1007/bf01230250
    38 rdf:type schema:PropertyValue
    39 N87334616ed50491aa160a9047e8ebcb7 schema:name Springer Nature - SN SciGraph project
    40 rdf:type schema:Organization
    41 Nc32f8c8574834a3ca3526e79aa66e7e1 rdf:first sg:person.012411554565.81
    42 rdf:rest rdf:nil
    43 Nccdb1df7578d47cb904a85ddc028b1f0 schema:volumeNumber 21
    44 rdf:type schema:PublicationVolume
    45 Ncfbe2d630f384b38a1a952a2b16be70c schema:name readcube_id
    46 schema:value 011dd96f460a5045f4bada6811df4ad143c9dc1ace1c75fdbc3399c7d5897f22
    47 rdf:type schema:PropertyValue
    48 Nf359770a2b7a4f51b819f1d51ba995e2 schema:issueNumber 1
    49 rdf:type schema:PublicationIssue
    50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    51 schema:name Mathematical Sciences
    52 rdf:type schema:DefinedTerm
    53 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    54 schema:name Applied Mathematics
    55 rdf:type schema:DefinedTerm
    56 sg:journal.1136436 schema:issn 0008-8714
    57 0923-2958
    58 schema:name Celestial Mechanics and Dynamical Astronomy
    59 rdf:type schema:Periodical
    60 sg:person.012411554565.81 schema:affiliation https://www.grid.ac/institutes/grid.6520.1
    61 schema:familyName Henrard
    62 schema:givenName Jacques
    63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012411554565.81
    64 rdf:type schema:Person
    65 sg:pub.10.1007/bf01227510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012283648
    66 https://doi.org/10.1007/bf01227510
    67 rdf:type schema:CreativeWork
    68 sg:pub.10.1007/bf01230546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019073723
    69 https://doi.org/10.1007/bf01230546
    70 rdf:type schema:CreativeWork
    71 sg:pub.10.1007/bf01329333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032390147
    72 https://doi.org/10.1007/bf01329333
    73 rdf:type schema:CreativeWork
    74 sg:pub.10.1007/bf01650284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003689019
    75 https://doi.org/10.1007/bf01650284
    76 rdf:type schema:CreativeWork
    77 https://doi.org/10.2514/3.1516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030884967
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.2514/3.2761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009482714
    80 rdf:type schema:CreativeWork
    81 https://www.grid.ac/institutes/grid.6520.1 schema:alternateName University of Namur
    82 schema:name Department of Mathematics, Facultés Universitaires de Namur, Rempart de la Vierge 8, B-5000, Namur, Belgium
    83 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...