Literal solution for Hill's lunar problem View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1979-04

AUTHORS

Dieter S. Schmidt

ABSTRACT

A computer program for the manipulation of power series in several variables is used to find the first order solution to Hill's lunar problem. The ratiom of the mean motion of the Sun to that of the Moon is kept as a formal parameter. The series inm are known to converge very poorly. It is shown how efficient algorithms among them the Lie transformation allow us to compute the series inm as far as they are needed. When the series are evaluated at Brown's numerical value form the results achieve or exceed his accuracy. More... »

PAGES

279-289

References to SciGraph publications

  • 1969-03. Canonical transformations depending on a small parameter in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1970-03. On a perturbation theory using Lie transforms in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1970-09. Mechanized Algebraic Operations (MAO) in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1971-09. Echeloned Series Processor (ESP) in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1972-09. Literal expressions for the co-ordinates of the moon in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1886-12. On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon in ACTA MATHEMATICA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01230219

    DOI

    http://dx.doi.org/10.1007/bf01230219

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1023643446


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computation Theory and Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Cincinnati", 
              "id": "https://www.grid.ac/institutes/grid.24827.3b", 
              "name": [
                "Department of Mathematical Sciences, University of Cincinnati, 45221, Cincinnati, Ohio, U.S.A."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schmidt", 
            "givenName": "Dieter S.", 
            "id": "sg:person.015464666561.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015464666561.44"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02417081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001743985", 
              "https://doi.org/10.1007/bf02417081"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013740596", 
              "https://doi.org/10.1007/bf01230436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230436", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013740596", 
              "https://doi.org/10.1007/bf01230436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230629", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028918192", 
              "https://doi.org/10.1007/bf01230629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230629", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028918192", 
              "https://doi.org/10.1007/bf01230629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01231135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037665759", 
              "https://doi.org/10.1007/bf01231135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01231135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037665759", 
              "https://doi.org/10.1007/bf01231135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01227779", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051736440", 
              "https://doi.org/10.1007/bf01227779"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01227779", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051736440", 
              "https://doi.org/10.1007/bf01227779"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01231805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051979332", 
              "https://doi.org/10.1007/bf01231805"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1967502", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069672984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2369430", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069896557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2369674", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069896729"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1979-04", 
        "datePublishedReg": "1979-04-01", 
        "description": "A computer program for the manipulation of power series in several variables is used to find the first order solution to Hill's lunar problem. The ratiom of the mean motion of the Sun to that of the Moon is kept as a formal parameter. The series inm are known to converge very poorly. It is shown how efficient algorithms among them the Lie transformation allow us to compute the series inm as far as they are needed. When the series are evaluated at Brown's numerical value form the results achieve or exceed his accuracy.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01230219", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136436", 
            "issn": [
              "0008-8714", 
              "0923-2958"
            ], 
            "name": "Celestial Mechanics and Dynamical Astronomy", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "19"
          }
        ], 
        "name": "Literal solution for Hill's lunar problem", 
        "pagination": "279-289", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "70a4e086abf10e3de6ff8ea60b1dd6e07b7a1af4be7776b96a36168df8a01e78"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01230219"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1023643446"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01230219", 
          "https://app.dimensions.ai/details/publication/pub.1023643446"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46747_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01230219"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01230219'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01230219'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01230219'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01230219'


     

    This table displays all metadata directly associated to this object as RDF triples.

    94 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01230219 schema:about anzsrc-for:08
    2 anzsrc-for:0802
    3 schema:author Nb94ceeefb11f4d67a5ad3569bfefa72e
    4 schema:citation sg:pub.10.1007/bf01227779
    5 sg:pub.10.1007/bf01230436
    6 sg:pub.10.1007/bf01230629
    7 sg:pub.10.1007/bf01231135
    8 sg:pub.10.1007/bf01231805
    9 sg:pub.10.1007/bf02417081
    10 https://doi.org/10.2307/1967502
    11 https://doi.org/10.2307/2369430
    12 https://doi.org/10.2307/2369674
    13 schema:datePublished 1979-04
    14 schema:datePublishedReg 1979-04-01
    15 schema:description A computer program for the manipulation of power series in several variables is used to find the first order solution to Hill's lunar problem. The ratiom of the mean motion of the Sun to that of the Moon is kept as a formal parameter. The series inm are known to converge very poorly. It is shown how efficient algorithms among them the Lie transformation allow us to compute the series inm as far as they are needed. When the series are evaluated at Brown's numerical value form the results achieve or exceed his accuracy.
    16 schema:genre research_article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N00fd1b34dd63458a843af9344bc674fc
    20 N98148d13996445f7b9e8bc222ad2ec72
    21 sg:journal.1136436
    22 schema:name Literal solution for Hill's lunar problem
    23 schema:pagination 279-289
    24 schema:productId N0f4b263c03e645b3a64055274d3b01ae
    25 N1b58ca3d1b544c179b352f81db6c4460
    26 Nfc12c76543574ffe92dbca29516739e3
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023643446
    28 https://doi.org/10.1007/bf01230219
    29 schema:sdDatePublished 2019-04-11T13:29
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher Nd7f8d9bf236a4ad486385ec76585d369
    32 schema:url http://link.springer.com/10.1007/BF01230219
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset articles
    35 rdf:type schema:ScholarlyArticle
    36 N00fd1b34dd63458a843af9344bc674fc schema:volumeNumber 19
    37 rdf:type schema:PublicationVolume
    38 N0f4b263c03e645b3a64055274d3b01ae schema:name doi
    39 schema:value 10.1007/bf01230219
    40 rdf:type schema:PropertyValue
    41 N1b58ca3d1b544c179b352f81db6c4460 schema:name dimensions_id
    42 schema:value pub.1023643446
    43 rdf:type schema:PropertyValue
    44 N98148d13996445f7b9e8bc222ad2ec72 schema:issueNumber 3
    45 rdf:type schema:PublicationIssue
    46 Nb94ceeefb11f4d67a5ad3569bfefa72e rdf:first sg:person.015464666561.44
    47 rdf:rest rdf:nil
    48 Nd7f8d9bf236a4ad486385ec76585d369 schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 Nfc12c76543574ffe92dbca29516739e3 schema:name readcube_id
    51 schema:value 70a4e086abf10e3de6ff8ea60b1dd6e07b7a1af4be7776b96a36168df8a01e78
    52 rdf:type schema:PropertyValue
    53 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    54 schema:name Information and Computing Sciences
    55 rdf:type schema:DefinedTerm
    56 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Computation Theory and Mathematics
    58 rdf:type schema:DefinedTerm
    59 sg:journal.1136436 schema:issn 0008-8714
    60 0923-2958
    61 schema:name Celestial Mechanics and Dynamical Astronomy
    62 rdf:type schema:Periodical
    63 sg:person.015464666561.44 schema:affiliation https://www.grid.ac/institutes/grid.24827.3b
    64 schema:familyName Schmidt
    65 schema:givenName Dieter S.
    66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015464666561.44
    67 rdf:type schema:Person
    68 sg:pub.10.1007/bf01227779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051736440
    69 https://doi.org/10.1007/bf01227779
    70 rdf:type schema:CreativeWork
    71 sg:pub.10.1007/bf01230436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013740596
    72 https://doi.org/10.1007/bf01230436
    73 rdf:type schema:CreativeWork
    74 sg:pub.10.1007/bf01230629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028918192
    75 https://doi.org/10.1007/bf01230629
    76 rdf:type schema:CreativeWork
    77 sg:pub.10.1007/bf01231135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037665759
    78 https://doi.org/10.1007/bf01231135
    79 rdf:type schema:CreativeWork
    80 sg:pub.10.1007/bf01231805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051979332
    81 https://doi.org/10.1007/bf01231805
    82 rdf:type schema:CreativeWork
    83 sg:pub.10.1007/bf02417081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001743985
    84 https://doi.org/10.1007/bf02417081
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.2307/1967502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069672984
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.2307/2369430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069896557
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.2307/2369674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069896729
    91 rdf:type schema:CreativeWork
    92 https://www.grid.ac/institutes/grid.24827.3b schema:alternateName University of Cincinnati
    93 schema:name Department of Mathematical Sciences, University of Cincinnati, 45221, Cincinnati, Ohio, U.S.A.
    94 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...