Analysis of aerosol images using the scale-space primal sketch View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-06

AUTHORS

Tony Lindeberg, Jan-Olof Eklundh

ABSTRACT

We outline a method to analyze aerosol images using the scale-space representation. The pictures, which are photographs of an aerosol generated by a fuel injector, contain phenomena that by a human observer are perceived as periodic or oscillatory structures. The presence of these structures is not immediately apparent since the periodicity manifests itself at a coarse level of scale while the dominating objects in the images are small dark blobs, that is, fine scale objects. Experimentally, we illustrate that the scale-space theory provides an objective method to bring out these events. However, in this form the method still relies on a subjective observer in order to extract and verify the existence of the periodic phenomena.Then we extend the analysis by adding a recently developed image analysis concept called the “scale-space primal sketch.” With this tool, we are able to extract significant structures from a grey-level image automatically without any strong a priori assumptions about either the shape or the scale (size) of the primitives. Experiments demonstrate that the periodic drop clusters we perceived in the image are detected by the algorithm as significant image structures. These results provide objective evidence verifying the existence of oscillatory phenomena. More... »

PAGES

135-144

References to SciGraph publications

  • 1984-08. The structure of images in BIOLOGICAL CYBERNETICS
  • 1986-04. Dynamic shape in BIOLOGICAL CYBERNETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01230197

    DOI

    http://dx.doi.org/10.1007/bf01230197

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1032266034


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology and Cognitive Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computation Theory and Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1702", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Cognitive Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Computational Vision and Active Perception Laboratory, Department of Numerical Analysis and Computing Science, Royal Institute of Technology, S-100 44, Stockholm, Sweden", 
              "id": "http://www.grid.ac/institutes/grid.5037.1", 
              "name": [
                "Computational Vision and Active Perception Laboratory, Department of Numerical Analysis and Computing Science, Royal Institute of Technology, S-100 44, Stockholm, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lindeberg", 
            "givenName": "Tony", 
            "id": "sg:person.015666316421.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015666316421.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Computational Vision and Active Perception Laboratory, Department of Numerical Analysis and Computing Science, Royal Institute of Technology, S-100 44, Stockholm, Sweden", 
              "id": "http://www.grid.ac/institutes/grid.5037.1", 
              "name": [
                "Computational Vision and Active Perception Laboratory, Department of Numerical Analysis and Computing Science, Royal Institute of Technology, S-100 44, Stockholm, Sweden"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eklundh", 
            "givenName": "Jan-Olof", 
            "id": "sg:person.014400652155.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014400652155.17"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00318204", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049957299", 
              "https://doi.org/10.1007/bf00318204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00336961", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003744571", 
              "https://doi.org/10.1007/bf00336961"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1991-06", 
        "datePublishedReg": "1991-06-01", 
        "description": "We outline a method to analyze aerosol images using the scale-space representation. The pictures, which are photographs of an aerosol generated by a fuel injector, contain phenomena that by a human observer are perceived as periodic or oscillatory structures. The presence of these structures is not immediately apparent since the periodicity manifests itself at a coarse level of scale while the dominating objects in the images are small dark blobs, that is, fine scale objects. Experimentally, we illustrate that the scale-space theory provides an objective method to bring out these events. However, in this form the method still relies on a subjective observer in order to extract and verify the existence of the periodic phenomena.Then we extend the analysis by adding a recently developed image analysis concept called the \u201cscale-space primal sketch.\u201d With this tool, we are able to extract significant structures from a grey-level image automatically without any strong a priori assumptions about either the shape or the scale (size) of the primitives. Experiments demonstrate that the periodic drop clusters we perceived in the image are detected by the algorithm as significant image structures. These results provide objective evidence verifying the existence of oscillatory phenomena.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01230197", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1045266", 
            "issn": [
              "0932-8092", 
              "1432-1769"
            ], 
            "name": "Machine Vision and Applications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "keywords": [
          "scale-space primal sketch", 
          "scale-space theory", 
          "scale-space representation", 
          "oscillatory structure", 
          "coarse level", 
          "drop clusters", 
          "oscillatory phenomena", 
          "periodic phenomena", 
          "primal sketch", 
          "scale objects", 
          "analysis concepts", 
          "observer", 
          "existence", 
          "image structure", 
          "significant structure", 
          "gray-level images", 
          "phenomenon", 
          "theory", 
          "objects", 
          "algorithm", 
          "structure", 
          "assumption", 
          "blobs", 
          "representation", 
          "periodicity", 
          "shape", 
          "clusters", 
          "primitives", 
          "fuel injector", 
          "sketch", 
          "order", 
          "analysis", 
          "scale", 
          "human observers", 
          "form", 
          "tool", 
          "concept", 
          "experiments", 
          "results", 
          "injector", 
          "objective method", 
          "images", 
          "picture", 
          "presence", 
          "events", 
          "levels", 
          "photographs", 
          "aerosols", 
          "evidence", 
          "objective evidence", 
          "method", 
          "fine-scale objects", 
          "image analysis concepts", 
          "significant image structure", 
          "aerosol images", 
          "dark blobs", 
          "subjective observer"
        ], 
        "name": "Analysis of aerosol images using the scale-space primal sketch", 
        "pagination": "135-144", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1032266034"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01230197"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01230197", 
          "https://app.dimensions.ai/details/publication/pub.1032266034"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_255.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01230197"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01230197'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01230197'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01230197'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01230197'


     

    This table displays all metadata directly associated to this object as RDF triples.

    141 TRIPLES      21 PREDICATES      87 URIs      74 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01230197 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 anzsrc-for:0802
    4 anzsrc-for:17
    5 anzsrc-for:1702
    6 schema:author Nef4acaf3ebea4f73bb4e01b03b870732
    7 schema:citation sg:pub.10.1007/bf00318204
    8 sg:pub.10.1007/bf00336961
    9 schema:datePublished 1991-06
    10 schema:datePublishedReg 1991-06-01
    11 schema:description We outline a method to analyze aerosol images using the scale-space representation. The pictures, which are photographs of an aerosol generated by a fuel injector, contain phenomena that by a human observer are perceived as periodic or oscillatory structures. The presence of these structures is not immediately apparent since the periodicity manifests itself at a coarse level of scale while the dominating objects in the images are small dark blobs, that is, fine scale objects. Experimentally, we illustrate that the scale-space theory provides an objective method to bring out these events. However, in this form the method still relies on a subjective observer in order to extract and verify the existence of the periodic phenomena.Then we extend the analysis by adding a recently developed image analysis concept called the “scale-space primal sketch.” With this tool, we are able to extract significant structures from a grey-level image automatically without any strong a priori assumptions about either the shape or the scale (size) of the primitives. Experiments demonstrate that the periodic drop clusters we perceived in the image are detected by the algorithm as significant image structures. These results provide objective evidence verifying the existence of oscillatory phenomena.
    12 schema:genre article
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N2616ec3edfb84afdbcf2844a378c6ebb
    15 Nc29d08e6a2c9490baa9d6f64dfa927d6
    16 sg:journal.1045266
    17 schema:keywords aerosol images
    18 aerosols
    19 algorithm
    20 analysis
    21 analysis concepts
    22 assumption
    23 blobs
    24 clusters
    25 coarse level
    26 concept
    27 dark blobs
    28 drop clusters
    29 events
    30 evidence
    31 existence
    32 experiments
    33 fine-scale objects
    34 form
    35 fuel injector
    36 gray-level images
    37 human observers
    38 image analysis concepts
    39 image structure
    40 images
    41 injector
    42 levels
    43 method
    44 objective evidence
    45 objective method
    46 objects
    47 observer
    48 order
    49 oscillatory phenomena
    50 oscillatory structure
    51 periodic phenomena
    52 periodicity
    53 phenomenon
    54 photographs
    55 picture
    56 presence
    57 primal sketch
    58 primitives
    59 representation
    60 results
    61 scale
    62 scale objects
    63 scale-space primal sketch
    64 scale-space representation
    65 scale-space theory
    66 shape
    67 significant image structure
    68 significant structure
    69 sketch
    70 structure
    71 subjective observer
    72 theory
    73 tool
    74 schema:name Analysis of aerosol images using the scale-space primal sketch
    75 schema:pagination 135-144
    76 schema:productId Nd9989a68515848c38f39caa52f4d9e0f
    77 Neb0a5987d8894c4c840c4f37afbac12a
    78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032266034
    79 https://doi.org/10.1007/bf01230197
    80 schema:sdDatePublished 2022-11-24T20:48
    81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    82 schema:sdPublisher N41dd9ebbef0540288ef5541869ce8deb
    83 schema:url https://doi.org/10.1007/bf01230197
    84 sgo:license sg:explorer/license/
    85 sgo:sdDataset articles
    86 rdf:type schema:ScholarlyArticle
    87 N2616ec3edfb84afdbcf2844a378c6ebb schema:volumeNumber 4
    88 rdf:type schema:PublicationVolume
    89 N41dd9ebbef0540288ef5541869ce8deb schema:name Springer Nature - SN SciGraph project
    90 rdf:type schema:Organization
    91 N4291fc42250a4c28b59ae5108ec9ac26 rdf:first sg:person.014400652155.17
    92 rdf:rest rdf:nil
    93 Nc29d08e6a2c9490baa9d6f64dfa927d6 schema:issueNumber 3
    94 rdf:type schema:PublicationIssue
    95 Nd9989a68515848c38f39caa52f4d9e0f schema:name dimensions_id
    96 schema:value pub.1032266034
    97 rdf:type schema:PropertyValue
    98 Neb0a5987d8894c4c840c4f37afbac12a schema:name doi
    99 schema:value 10.1007/bf01230197
    100 rdf:type schema:PropertyValue
    101 Nef4acaf3ebea4f73bb4e01b03b870732 rdf:first sg:person.015666316421.55
    102 rdf:rest N4291fc42250a4c28b59ae5108ec9ac26
    103 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Information and Computing Sciences
    105 rdf:type schema:DefinedTerm
    106 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Artificial Intelligence and Image Processing
    108 rdf:type schema:DefinedTerm
    109 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
    110 schema:name Computation Theory and Mathematics
    111 rdf:type schema:DefinedTerm
    112 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Psychology and Cognitive Sciences
    114 rdf:type schema:DefinedTerm
    115 anzsrc-for:1702 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Cognitive Sciences
    117 rdf:type schema:DefinedTerm
    118 sg:journal.1045266 schema:issn 0932-8092
    119 1432-1769
    120 schema:name Machine Vision and Applications
    121 schema:publisher Springer Nature
    122 rdf:type schema:Periodical
    123 sg:person.014400652155.17 schema:affiliation grid-institutes:grid.5037.1
    124 schema:familyName Eklundh
    125 schema:givenName Jan-Olof
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014400652155.17
    127 rdf:type schema:Person
    128 sg:person.015666316421.55 schema:affiliation grid-institutes:grid.5037.1
    129 schema:familyName Lindeberg
    130 schema:givenName Tony
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015666316421.55
    132 rdf:type schema:Person
    133 sg:pub.10.1007/bf00318204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049957299
    134 https://doi.org/10.1007/bf00318204
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/bf00336961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003744571
    137 https://doi.org/10.1007/bf00336961
    138 rdf:type schema:CreativeWork
    139 grid-institutes:grid.5037.1 schema:alternateName Computational Vision and Active Perception Laboratory, Department of Numerical Analysis and Computing Science, Royal Institute of Technology, S-100 44, Stockholm, Sweden
    140 schema:name Computational Vision and Active Perception Laboratory, Department of Numerical Analysis and Computing Science, Royal Institute of Technology, S-100 44, Stockholm, Sweden
    141 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...