Mutual gravitational potential ofN solid bodies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1978-10

AUTHORS

N. Borderies

ABSTRACT

The mutual gravitational potential ofN solid bodies is expanded without approximation in terms of harmonic coefficients of each body. As an application the Euler dynamical equations for the motion of the axis of figure of the rigid Earth are integrated analytically by the method of variation of parameters.

PAGES

295-307

References to SciGraph publications

  • 1973-12. The earth-moon potential energy in STUDIA GEOPHYSICA ET GEODAETICA
  • 1971-12. Motion of a space station. I in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01230170

    DOI

    http://dx.doi.org/10.1007/bf01230170

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1027299270


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Groupe de Recherches de G\u00e9od\u00e9sie Spatiale, Centre National d'Etudes Spatiales, 18 Avenue Edouard Belin, 31055, Toulouse-Cedex, France", 
              "id": "http://www.grid.ac/institutes/grid.13349.3c", 
              "name": [
                "Groupe de Recherches de G\u00e9od\u00e9sie Spatiale, Centre National d'Etudes Spatiales, 18 Avenue Edouard Belin, 31055, Toulouse-Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Borderies", 
            "givenName": "N.", 
            "id": "sg:person.014765272656.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014765272656.72"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01231403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045919025", 
              "https://doi.org/10.1007/bf01231403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01576717", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037168158", 
              "https://doi.org/10.1007/bf01576717"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1978-10", 
        "datePublishedReg": "1978-10-01", 
        "description": "The mutual gravitational potential ofN solid bodies is expanded without approximation in terms of harmonic coefficients of each body. As an application the Euler dynamical equations for the motion of the axis of figure of the rigid Earth are integrated analytically by the method of variation of parameters.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01230170", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136436", 
            "issn": [
              "0008-8714", 
              "0923-2958"
            ], 
            "name": "Celestial Mechanics and Dynamical Astronomy", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "keywords": [
          "Euler's dynamical equations", 
          "method of variation", 
          "dynamical equations", 
          "solid body", 
          "rigid Earth", 
          "harmonic coefficients", 
          "equations", 
          "approximation", 
          "motion", 
          "parameters", 
          "applications", 
          "coefficient", 
          "terms", 
          "body", 
          "variation", 
          "axis", 
          "figures", 
          "Earth", 
          "method", 
          "mutual gravitational potential ofN solid bodies", 
          "gravitational potential ofN solid bodies", 
          "potential ofN solid bodies", 
          "ofN solid bodies", 
          "axis of figure"
        ], 
        "name": "Mutual gravitational potential ofN solid bodies", 
        "pagination": "295-307", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1027299270"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01230170"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01230170", 
          "https://app.dimensions.ai/details/publication/pub.1027299270"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T17:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_108.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01230170"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01230170'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01230170'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01230170'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01230170'


     

    This table displays all metadata directly associated to this object as RDF triples.

    90 TRIPLES      22 PREDICATES      52 URIs      42 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01230170 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N1a8ce14203a54ae4a6392897874aa7c3
    4 schema:citation sg:pub.10.1007/bf01231403
    5 sg:pub.10.1007/bf01576717
    6 schema:datePublished 1978-10
    7 schema:datePublishedReg 1978-10-01
    8 schema:description The mutual gravitational potential ofN solid bodies is expanded without approximation in terms of harmonic coefficients of each body. As an application the Euler dynamical equations for the motion of the axis of figure of the rigid Earth are integrated analytically by the method of variation of parameters.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf Nb35a30a27f264a60a752eca228f20466
    13 Nfb8176cf03344dc781444f13881f0796
    14 sg:journal.1136436
    15 schema:keywords Earth
    16 Euler's dynamical equations
    17 applications
    18 approximation
    19 axis
    20 axis of figure
    21 body
    22 coefficient
    23 dynamical equations
    24 equations
    25 figures
    26 gravitational potential ofN solid bodies
    27 harmonic coefficients
    28 method
    29 method of variation
    30 motion
    31 mutual gravitational potential ofN solid bodies
    32 ofN solid bodies
    33 parameters
    34 potential ofN solid bodies
    35 rigid Earth
    36 solid body
    37 terms
    38 variation
    39 schema:name Mutual gravitational potential ofN solid bodies
    40 schema:pagination 295-307
    41 schema:productId N48d421cf87e0427391a667d9f323da79
    42 N5c6f3e06de624e819c2b91be3cc1b0e2
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027299270
    44 https://doi.org/10.1007/bf01230170
    45 schema:sdDatePublished 2022-01-01T17:59
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher N650cbb2b15ab4603866b2bd88ca44336
    48 schema:url https://doi.org/10.1007/bf01230170
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N1a8ce14203a54ae4a6392897874aa7c3 rdf:first sg:person.014765272656.72
    53 rdf:rest rdf:nil
    54 N48d421cf87e0427391a667d9f323da79 schema:name dimensions_id
    55 schema:value pub.1027299270
    56 rdf:type schema:PropertyValue
    57 N5c6f3e06de624e819c2b91be3cc1b0e2 schema:name doi
    58 schema:value 10.1007/bf01230170
    59 rdf:type schema:PropertyValue
    60 N650cbb2b15ab4603866b2bd88ca44336 schema:name Springer Nature - SN SciGraph project
    61 rdf:type schema:Organization
    62 Nb35a30a27f264a60a752eca228f20466 schema:volumeNumber 18
    63 rdf:type schema:PublicationVolume
    64 Nfb8176cf03344dc781444f13881f0796 schema:issueNumber 3
    65 rdf:type schema:PublicationIssue
    66 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Mathematical Sciences
    68 rdf:type schema:DefinedTerm
    69 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Applied Mathematics
    71 rdf:type schema:DefinedTerm
    72 sg:journal.1136436 schema:issn 0008-8714
    73 0923-2958
    74 schema:name Celestial Mechanics and Dynamical Astronomy
    75 schema:publisher Springer Nature
    76 rdf:type schema:Periodical
    77 sg:person.014765272656.72 schema:affiliation grid-institutes:grid.13349.3c
    78 schema:familyName Borderies
    79 schema:givenName N.
    80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014765272656.72
    81 rdf:type schema:Person
    82 sg:pub.10.1007/bf01231403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045919025
    83 https://doi.org/10.1007/bf01231403
    84 rdf:type schema:CreativeWork
    85 sg:pub.10.1007/bf01576717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037168158
    86 https://doi.org/10.1007/bf01576717
    87 rdf:type schema:CreativeWork
    88 grid-institutes:grid.13349.3c schema:alternateName Groupe de Recherches de Géodésie Spatiale, Centre National d'Etudes Spatiales, 18 Avenue Edouard Belin, 31055, Toulouse-Cedex, France
    89 schema:name Groupe de Recherches de Géodésie Spatiale, Centre National d'Etudes Spatiales, 18 Avenue Edouard Belin, 31055, Toulouse-Cedex, France
    90 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...