On error bounds and initialization in satellite orbit theories View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1970-06

AUTHORS

John V. Breakwell, Juris Vagners

ABSTRACT

The order of magnitude of the error is investigated for a first-order von Zeipel theory of satellite orbits in an axisymmetric force field, i.e., first-order long period and short-period effects are included along with second order secular rates. The treatment is valid for zero eccentricity and/or inclination. In the case where initial position and velocity vectors are known, the in-track position error over time intervals of order 1/J2 is kept at 0(J22), like the other position errors and velocity errors, by calibration of the mean motion with the aid of the energy integral. The results are specifically applicable to accuracy comparisons of the Brouwer orbit prediction method with numerical integration. A modified calibration is presented for the general asymmetric force field which includes tesseral harmonics. More... »

PAGES

253-264

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01229499

DOI

http://dx.doi.org/10.1007/bf01229499

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009461278


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stanford University, Stanford, Calif., USA", 
          "id": "http://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Stanford University, Stanford, Calif., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Breakwell", 
        "givenName": "John V.", 
        "id": "sg:person.014463552077.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014463552077.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Washington, Seattle, Wash., USA", 
          "id": "http://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "University of Washington, Seattle, Wash., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vagners", 
        "givenName": "Juris", 
        "id": "sg:person.016674661223.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016674661223.70"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1970-06", 
    "datePublishedReg": "1970-06-01", 
    "description": "The order of magnitude of the error is investigated for a first-order von Zeipel theory of satellite orbits in an axisymmetric force field, i.e., first-order long period and short-period effects are included along with second order secular rates. The treatment is valid for zero eccentricity and/or inclination. In the case where initial position and velocity vectors are known, the in-track position error over time intervals of order 1/J2 is kept at 0(J22), like the other position errors and velocity errors, by calibration of the mean motion with the aid of the energy integral. The results are specifically applicable to accuracy comparisons of the Brouwer orbit prediction method with numerical integration. A modified calibration is presented for the general asymmetric force field which includes tesseral harmonics.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01229499", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136436", 
        "issn": [
          "0008-8714", 
          "0923-2958"
        ], 
        "name": "Celestial Mechanics and Dynamical Astronomy", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "2"
      }
    ], 
    "keywords": [
      "track position error", 
      "position error", 
      "velocity vector", 
      "velocity error", 
      "satellite orbits", 
      "mean motion", 
      "orders of magnitude", 
      "prediction method", 
      "modified calibration", 
      "asymmetric force field", 
      "numerical integration", 
      "energy integral", 
      "tesseral harmonics", 
      "calibration", 
      "initial position", 
      "error", 
      "field", 
      "harmonics", 
      "short-period effects", 
      "motion", 
      "force field", 
      "secular rate", 
      "eccentricity", 
      "inclination", 
      "integration", 
      "order", 
      "magnitude", 
      "method", 
      "theory", 
      "long period", 
      "error bounds", 
      "initialization", 
      "orbit", 
      "time interval", 
      "results", 
      "aid", 
      "comparison", 
      "effect", 
      "rate", 
      "integrals", 
      "position", 
      "orbit theory", 
      "cases", 
      "vector", 
      "bounds", 
      "period", 
      "treatment", 
      "intervals", 
      "J2", 
      "first-order von Zeipel theory", 
      "von Zeipel theory", 
      "Zeipel theory", 
      "axisymmetric force field", 
      "first-order long period", 
      "second order secular rates", 
      "order secular rates", 
      "order 1/J2", 
      "Brouwer orbit prediction method", 
      "orbit prediction method", 
      "general asymmetric force field", 
      "satellite orbit theories"
    ], 
    "name": "On error bounds and initialization in satellite orbit theories", 
    "pagination": "253-264", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009461278"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01229499"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01229499", 
      "https://app.dimensions.ai/details/publication/pub.1009461278"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T17:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_117.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01229499"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01229499'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01229499'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01229499'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01229499'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      21 PREDICATES      87 URIs      79 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01229499 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N8b8ce45c13854d01bac913de859cf56c
4 schema:datePublished 1970-06
5 schema:datePublishedReg 1970-06-01
6 schema:description The order of magnitude of the error is investigated for a first-order von Zeipel theory of satellite orbits in an axisymmetric force field, i.e., first-order long period and short-period effects are included along with second order secular rates. The treatment is valid for zero eccentricity and/or inclination. In the case where initial position and velocity vectors are known, the in-track position error over time intervals of order 1/J2 is kept at 0(J22), like the other position errors and velocity errors, by calibration of the mean motion with the aid of the energy integral. The results are specifically applicable to accuracy comparisons of the Brouwer orbit prediction method with numerical integration. A modified calibration is presented for the general asymmetric force field which includes tesseral harmonics.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N0cdce613ffda46a78b3750fba5ed4922
11 Nf20a2cf29f574aa3bb2a80f593a394da
12 sg:journal.1136436
13 schema:keywords Brouwer orbit prediction method
14 J2
15 Zeipel theory
16 aid
17 asymmetric force field
18 axisymmetric force field
19 bounds
20 calibration
21 cases
22 comparison
23 eccentricity
24 effect
25 energy integral
26 error
27 error bounds
28 field
29 first-order long period
30 first-order von Zeipel theory
31 force field
32 general asymmetric force field
33 harmonics
34 inclination
35 initial position
36 initialization
37 integrals
38 integration
39 intervals
40 long period
41 magnitude
42 mean motion
43 method
44 modified calibration
45 motion
46 numerical integration
47 orbit
48 orbit prediction method
49 orbit theory
50 order
51 order 1/J2
52 order secular rates
53 orders of magnitude
54 period
55 position
56 position error
57 prediction method
58 rate
59 results
60 satellite orbit theories
61 satellite orbits
62 second order secular rates
63 secular rate
64 short-period effects
65 tesseral harmonics
66 theory
67 time interval
68 track position error
69 treatment
70 vector
71 velocity error
72 velocity vector
73 von Zeipel theory
74 schema:name On error bounds and initialization in satellite orbit theories
75 schema:pagination 253-264
76 schema:productId N6a40ad2d7b9e4df1a755af727f885826
77 N76402af29a76438baaf9f6bdad3137a0
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009461278
79 https://doi.org/10.1007/bf01229499
80 schema:sdDatePublished 2021-11-01T17:53
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N219eb5a8613e4bd3972296c2c242b956
83 schema:url https://doi.org/10.1007/bf01229499
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N0cdce613ffda46a78b3750fba5ed4922 schema:issueNumber 2
88 rdf:type schema:PublicationIssue
89 N219eb5a8613e4bd3972296c2c242b956 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N6a40ad2d7b9e4df1a755af727f885826 schema:name doi
92 schema:value 10.1007/bf01229499
93 rdf:type schema:PropertyValue
94 N76402af29a76438baaf9f6bdad3137a0 schema:name dimensions_id
95 schema:value pub.1009461278
96 rdf:type schema:PropertyValue
97 N8b36e986d64c46c8b04acab4a1d4b290 rdf:first sg:person.016674661223.70
98 rdf:rest rdf:nil
99 N8b8ce45c13854d01bac913de859cf56c rdf:first sg:person.014463552077.01
100 rdf:rest N8b36e986d64c46c8b04acab4a1d4b290
101 Nf20a2cf29f574aa3bb2a80f593a394da schema:volumeNumber 2
102 rdf:type schema:PublicationVolume
103 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
104 schema:name Mathematical Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
107 schema:name Applied Mathematics
108 rdf:type schema:DefinedTerm
109 sg:journal.1136436 schema:issn 0008-8714
110 0923-2958
111 schema:name Celestial Mechanics and Dynamical Astronomy
112 schema:publisher Springer Nature
113 rdf:type schema:Periodical
114 sg:person.014463552077.01 schema:affiliation grid-institutes:grid.168010.e
115 schema:familyName Breakwell
116 schema:givenName John V.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014463552077.01
118 rdf:type schema:Person
119 sg:person.016674661223.70 schema:affiliation grid-institutes:grid.34477.33
120 schema:familyName Vagners
121 schema:givenName Juris
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016674661223.70
123 rdf:type schema:Person
124 grid-institutes:grid.168010.e schema:alternateName Stanford University, Stanford, Calif., USA
125 schema:name Stanford University, Stanford, Calif., USA
126 rdf:type schema:Organization
127 grid-institutes:grid.34477.33 schema:alternateName University of Washington, Seattle, Wash., USA
128 schema:name University of Washington, Seattle, Wash., USA
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...