Equivalence for lie transforms View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1974-12

AUTHORS

Jacques Henrard, Jacques Roels

ABSTRACT

The Lie transform method used in Perturbation Theory is based upon an intrinsic algorithm for transforming functions or vector fields by a transformation close to the identity. It can thus be viewed as a specialization of methods and results of differential geometry as is shown in the first part of this paper. In a second part we answer some of the questions left open in connection with the equivalence of the algorithms proposed by Hori and Deprit. From a formal point of view, the methods are shown to be equivalent for non-canonical as well as canonical transformations and a formula relating directly the two generating functions (or vector fields) is presented (formula (5.17)). On the other hand, the equivalence is shown to hold also in the ring ofp-differentiable functions. More... »

PAGES

497-512

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01229124

DOI

http://dx.doi.org/10.1007/bf01229124

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050175292


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Namur", 
          "id": "https://www.grid.ac/institutes/grid.6520.1", 
          "name": [
            "Facult\u00e9s Universitaires de Namur, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Henrard", 
        "givenName": "Jacques", 
        "id": "sg:person.012411554565.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012411554565.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 Catholique de Louvain", 
          "id": "https://www.grid.ac/institutes/grid.7942.8", 
          "name": [
            "Universit\u00e9 Catholique de Louvain, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roels", 
        "givenName": "Jacques", 
        "id": "sg:person.013246147270.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013246147270.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01230455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013280863", 
          "https://doi.org/10.1007/bf01230455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01230455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013280863", 
          "https://doi.org/10.1007/bf01230455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01230436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013740596", 
          "https://doi.org/10.1007/bf01230436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01230436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013740596", 
          "https://doi.org/10.1007/bf01230436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01230435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016915999", 
          "https://doi.org/10.1007/bf01230435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01230435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016915999", 
          "https://doi.org/10.1007/bf01230435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01231807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018415827", 
          "https://doi.org/10.1007/bf01231807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01231807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018415827", 
          "https://doi.org/10.1007/bf01231807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01230629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028918192", 
          "https://doi.org/10.1007/bf01230629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01230629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028918192", 
          "https://doi.org/10.1007/bf01230629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-010-2611-6_26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040699962", 
          "https://doi.org/10.1007/978-94-010-2611-6_26"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1974-12", 
    "datePublishedReg": "1974-12-01", 
    "description": "The Lie transform method used in Perturbation Theory is based upon an intrinsic algorithm for transforming functions or vector fields by a transformation close to the identity. It can thus be viewed as a specialization of methods and results of differential geometry as is shown in the first part of this paper. In a second part we answer some of the questions left open in connection with the equivalence of the algorithms proposed by Hori and Deprit. From a formal point of view, the methods are shown to be equivalent for non-canonical as well as canonical transformations and a formula relating directly the two generating functions (or vector fields) is presented (formula (5.17)). On the other hand, the equivalence is shown to hold also in the ring ofp-differentiable functions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01229124", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136436", 
        "issn": [
          "0008-8714", 
          "0923-2958"
        ], 
        "name": "Celestial Mechanics and Dynamical Astronomy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Equivalence for lie transforms", 
    "pagination": "497-512", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ef0541504bad59f7e01e0cd5d4e1ee7e9929f10342b5240b8f2ee89cbc234a06"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01229124"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050175292"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01229124", 
      "https://app.dimensions.ai/details/publication/pub.1050175292"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46747_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01229124"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01229124'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01229124'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01229124'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01229124'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01229124 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nca72d2b0b6cc489eb76586ef65ceadb0
4 schema:citation sg:pub.10.1007/978-94-010-2611-6_26
5 sg:pub.10.1007/bf01230435
6 sg:pub.10.1007/bf01230436
7 sg:pub.10.1007/bf01230455
8 sg:pub.10.1007/bf01230629
9 sg:pub.10.1007/bf01231807
10 schema:datePublished 1974-12
11 schema:datePublishedReg 1974-12-01
12 schema:description The Lie transform method used in Perturbation Theory is based upon an intrinsic algorithm for transforming functions or vector fields by a transformation close to the identity. It can thus be viewed as a specialization of methods and results of differential geometry as is shown in the first part of this paper. In a second part we answer some of the questions left open in connection with the equivalence of the algorithms proposed by Hori and Deprit. From a formal point of view, the methods are shown to be equivalent for non-canonical as well as canonical transformations and a formula relating directly the two generating functions (or vector fields) is presented (formula (5.17)). On the other hand, the equivalence is shown to hold also in the ring ofp-differentiable functions.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N391af162495644bcbe5891d18fbcd0f2
17 Nf9bb3c823e33451696897cd3d56edbc3
18 sg:journal.1136436
19 schema:name Equivalence for lie transforms
20 schema:pagination 497-512
21 schema:productId N5b5097388ad34ac78ec3ada7048d1db0
22 N994e428ad3b14a849d6a6099ecc9e9c3
23 Na90f7370dedf4633b52bd366606c253f
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050175292
25 https://doi.org/10.1007/bf01229124
26 schema:sdDatePublished 2019-04-11T13:29
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher Nccc7c3ce046549fab37dfcb26b6cb6ef
29 schema:url http://link.springer.com/10.1007/BF01229124
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N391af162495644bcbe5891d18fbcd0f2 schema:issueNumber 4
34 rdf:type schema:PublicationIssue
35 N5b5097388ad34ac78ec3ada7048d1db0 schema:name dimensions_id
36 schema:value pub.1050175292
37 rdf:type schema:PropertyValue
38 N6b139a3475de4d16b11b6f06d4093632 rdf:first sg:person.013246147270.94
39 rdf:rest rdf:nil
40 N994e428ad3b14a849d6a6099ecc9e9c3 schema:name doi
41 schema:value 10.1007/bf01229124
42 rdf:type schema:PropertyValue
43 Na90f7370dedf4633b52bd366606c253f schema:name readcube_id
44 schema:value ef0541504bad59f7e01e0cd5d4e1ee7e9929f10342b5240b8f2ee89cbc234a06
45 rdf:type schema:PropertyValue
46 Nca72d2b0b6cc489eb76586ef65ceadb0 rdf:first sg:person.012411554565.81
47 rdf:rest N6b139a3475de4d16b11b6f06d4093632
48 Nccc7c3ce046549fab37dfcb26b6cb6ef schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 Nf9bb3c823e33451696897cd3d56edbc3 schema:volumeNumber 10
51 rdf:type schema:PublicationVolume
52 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
53 schema:name Mathematical Sciences
54 rdf:type schema:DefinedTerm
55 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
56 schema:name Pure Mathematics
57 rdf:type schema:DefinedTerm
58 sg:journal.1136436 schema:issn 0008-8714
59 0923-2958
60 schema:name Celestial Mechanics and Dynamical Astronomy
61 rdf:type schema:Periodical
62 sg:person.012411554565.81 schema:affiliation https://www.grid.ac/institutes/grid.6520.1
63 schema:familyName Henrard
64 schema:givenName Jacques
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012411554565.81
66 rdf:type schema:Person
67 sg:person.013246147270.94 schema:affiliation https://www.grid.ac/institutes/grid.7942.8
68 schema:familyName Roels
69 schema:givenName Jacques
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013246147270.94
71 rdf:type schema:Person
72 sg:pub.10.1007/978-94-010-2611-6_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040699962
73 https://doi.org/10.1007/978-94-010-2611-6_26
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/bf01230435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016915999
76 https://doi.org/10.1007/bf01230435
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bf01230436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013740596
79 https://doi.org/10.1007/bf01230436
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf01230455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013280863
82 https://doi.org/10.1007/bf01230455
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/bf01230629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028918192
85 https://doi.org/10.1007/bf01230629
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/bf01231807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018415827
88 https://doi.org/10.1007/bf01231807
89 rdf:type schema:CreativeWork
90 https://www.grid.ac/institutes/grid.6520.1 schema:alternateName University of Namur
91 schema:name Facultés Universitaires de Namur, Belgium
92 rdf:type schema:Organization
93 https://www.grid.ac/institutes/grid.7942.8 schema:alternateName Université Catholique de Louvain
94 schema:name Université Catholique de Louvain, Belgium
95 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...