Virtual singularities in the artificial satellite theory View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1974-12

AUTHORS

Jacques Henrard

ABSTRACT

When the coordinate system used in perturbation theory presents a geometrical singularity and when the perturbation technique fails to take account of this, the solution developed may present singularities which are no longer easily explained by purely geometrical means. These singularities have been calledvirtual singularities by Deprit and Rom (1970). We propose to demonstrate that virtual singularities can in general be avoided by the use of Lie transforms. In general, it is sufficient to recognize that the original Hamiltonian function presents the d'Alembert characteristic with respect to pairs of action-angle variables and that the averaging operations preserve this characteristic. We then apply this criterion to the artificial satellite theory (for small to moderate eccentricity) showing that all of three possible virtual singularities can be avoided at the same time. A new set of elliptic elements, well suited to the problem at hand, is introduced. More... »

PAGES

437-449

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01229120

DOI

http://dx.doi.org/10.1007/bf01229120

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022170871


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Namur", 
          "id": "https://www.grid.ac/institutes/grid.6520.1", 
          "name": [
            "Facult\u00e9s Universitaires de Namur, 5000, Namur, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Henrard", 
        "givenName": "Jacques", 
        "id": "sg:person.012411554565.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012411554565.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01230436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013740596", 
          "https://doi.org/10.1007/bf01230436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01230436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013740596", 
          "https://doi.org/10.1007/bf01230436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01229494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015017898", 
          "https://doi.org/10.1007/bf01229494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01229494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015017898", 
          "https://doi.org/10.1007/bf01229494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01230629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028918192", 
          "https://doi.org/10.1007/bf01230629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01230629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028918192", 
          "https://doi.org/10.1007/bf01230629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-010-2611-6_26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040699962", 
          "https://doi.org/10.1007/978-94-010-2611-6_26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/107958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058446685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/109179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058447824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/109948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058448558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/111116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058449695"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1974-12", 
    "datePublishedReg": "1974-12-01", 
    "description": "When the coordinate system used in perturbation theory presents a geometrical singularity and when the perturbation technique fails to take account of this, the solution developed may present singularities which are no longer easily explained by purely geometrical means. These singularities have been calledvirtual singularities by Deprit and Rom (1970). We propose to demonstrate that virtual singularities can in general be avoided by the use of Lie transforms. In general, it is sufficient to recognize that the original Hamiltonian function presents the d'Alembert characteristic with respect to pairs of action-angle variables and that the averaging operations preserve this characteristic. We then apply this criterion to the artificial satellite theory (for small to moderate eccentricity) showing that all of three possible virtual singularities can be avoided at the same time. A new set of elliptic elements, well suited to the problem at hand, is introduced.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01229120", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136436", 
        "issn": [
          "0008-8714", 
          "0923-2958"
        ], 
        "name": "Celestial Mechanics and Dynamical Astronomy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Virtual singularities in the artificial satellite theory", 
    "pagination": "437-449", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "69a0ba8366d5c5db712299ae98d94760dc4eaeb3c09f58693ff893adffbbc647"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01229120"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022170871"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01229120", 
      "https://app.dimensions.ai/details/publication/pub.1022170871"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46769_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01229120"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01229120'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01229120'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01229120'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01229120'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01229120 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Na9510a76dc374db084cc9934eb26cd5f
4 schema:citation sg:pub.10.1007/978-94-010-2611-6_26
5 sg:pub.10.1007/bf01229494
6 sg:pub.10.1007/bf01230436
7 sg:pub.10.1007/bf01230629
8 https://doi.org/10.1086/107958
9 https://doi.org/10.1086/109179
10 https://doi.org/10.1086/109948
11 https://doi.org/10.1086/111116
12 schema:datePublished 1974-12
13 schema:datePublishedReg 1974-12-01
14 schema:description When the coordinate system used in perturbation theory presents a geometrical singularity and when the perturbation technique fails to take account of this, the solution developed may present singularities which are no longer easily explained by purely geometrical means. These singularities have been calledvirtual singularities by Deprit and Rom (1970). We propose to demonstrate that virtual singularities can in general be avoided by the use of Lie transforms. In general, it is sufficient to recognize that the original Hamiltonian function presents the d'Alembert characteristic with respect to pairs of action-angle variables and that the averaging operations preserve this characteristic. We then apply this criterion to the artificial satellite theory (for small to moderate eccentricity) showing that all of three possible virtual singularities can be avoided at the same time. A new set of elliptic elements, well suited to the problem at hand, is introduced.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N1dd5a2c87f744b90becda1d5040cf1ff
19 N1f276dfa8a9348db901d3896b829552d
20 sg:journal.1136436
21 schema:name Virtual singularities in the artificial satellite theory
22 schema:pagination 437-449
23 schema:productId N0a11fb3660f64c0d9e1b6f2d4277dd8e
24 N1447a05cdaa2452f978565bfa0f16671
25 N3eb043a954414d96921ae4fb5b77c7a4
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022170871
27 https://doi.org/10.1007/bf01229120
28 schema:sdDatePublished 2019-04-11T13:34
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N86b343ba05d449f68f8d68ba6fbd1471
31 schema:url http://link.springer.com/10.1007/BF01229120
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N0a11fb3660f64c0d9e1b6f2d4277dd8e schema:name doi
36 schema:value 10.1007/bf01229120
37 rdf:type schema:PropertyValue
38 N1447a05cdaa2452f978565bfa0f16671 schema:name dimensions_id
39 schema:value pub.1022170871
40 rdf:type schema:PropertyValue
41 N1dd5a2c87f744b90becda1d5040cf1ff schema:issueNumber 4
42 rdf:type schema:PublicationIssue
43 N1f276dfa8a9348db901d3896b829552d schema:volumeNumber 10
44 rdf:type schema:PublicationVolume
45 N3eb043a954414d96921ae4fb5b77c7a4 schema:name readcube_id
46 schema:value 69a0ba8366d5c5db712299ae98d94760dc4eaeb3c09f58693ff893adffbbc647
47 rdf:type schema:PropertyValue
48 N86b343ba05d449f68f8d68ba6fbd1471 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 Na9510a76dc374db084cc9934eb26cd5f rdf:first sg:person.012411554565.81
51 rdf:rest rdf:nil
52 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
53 schema:name Mathematical Sciences
54 rdf:type schema:DefinedTerm
55 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
56 schema:name Pure Mathematics
57 rdf:type schema:DefinedTerm
58 sg:journal.1136436 schema:issn 0008-8714
59 0923-2958
60 schema:name Celestial Mechanics and Dynamical Astronomy
61 rdf:type schema:Periodical
62 sg:person.012411554565.81 schema:affiliation https://www.grid.ac/institutes/grid.6520.1
63 schema:familyName Henrard
64 schema:givenName Jacques
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012411554565.81
66 rdf:type schema:Person
67 sg:pub.10.1007/978-94-010-2611-6_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040699962
68 https://doi.org/10.1007/978-94-010-2611-6_26
69 rdf:type schema:CreativeWork
70 sg:pub.10.1007/bf01229494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015017898
71 https://doi.org/10.1007/bf01229494
72 rdf:type schema:CreativeWork
73 sg:pub.10.1007/bf01230436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013740596
74 https://doi.org/10.1007/bf01230436
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/bf01230629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028918192
77 https://doi.org/10.1007/bf01230629
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1086/107958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058446685
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1086/109179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058447824
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1086/109948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058448558
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1086/111116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058449695
86 rdf:type schema:CreativeWork
87 https://www.grid.ac/institutes/grid.6520.1 schema:alternateName University of Namur
88 schema:name Facultés Universitaires de Namur, 5000, Namur, Belgium
89 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...