Capture into resonance: An extension of the use of adiabatic invariants View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1982-05

AUTHORS

J. Henrard

ABSTRACT

The theory of the adiabatic invariant predicts the long term evolution of mechanical systems with slowly varying parameters. Unfortunately, it is not valid when the system goes across a critical trajectory. This case is important because it can lead to capture into resonance. Analysing the motion in the vincinity of the critical trajectory, we are able to give general formulae for the probability of capture and to show that in general, the adiabatic invariant is conserved (allowance being made for the geometrical discontinuity in its definition at the critical orbit). More... »

PAGES

3-22

References to SciGraph publications

  • 1979-01. Diagrammatic theory of transition of pendulum like systems in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1979-04. On the rotation of Mercury in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1979-06. How tidal heating in Io drives the galilean orbital resonance locks in NATURE
  • 1974-07. Normal forms for Hamiltonian systems in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1978-10. Some mathematical aspects of spin-orbit resonance in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1965-11. Rotational Period of the Planet Mercury in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01228946

    DOI

    http://dx.doi.org/10.1007/bf01228946

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002139158


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Namur", 
              "id": "https://www.grid.ac/institutes/grid.6520.1", 
              "name": [
                "Department of Mathematics, Facult\u00e9s Universitaires de Namur, Namur, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Henrard", 
            "givenName": "J.", 
            "id": "sg:person.012411554565.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012411554565.81"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0083-6656(77)90031-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008737785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0083-6656(77)90031-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008737785"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009825838", 
              "https://doi.org/10.1007/bf01230164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009825838", 
              "https://doi.org/10.1007/bf01230164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.aa.14.090176.001243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017822711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/208575a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017877812", 
              "https://doi.org/10.1038/208575a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/mnras/166.1.165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021288371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230222", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022356147", 
              "https://doi.org/10.1007/bf01230222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230222", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022356147", 
              "https://doi.org/10.1007/bf01230222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/mnras/130.3.159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027066766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027217087", 
              "https://doi.org/10.1007/bf01230171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027217087", 
              "https://doi.org/10.1007/bf01230171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01329333", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032390147", 
              "https://doi.org/10.1007/bf01329333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1029/jb084ib01p00243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034383583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/mnras/160.2.169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041408964"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/279767a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050131686", 
              "https://doi.org/10.1038/279767a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/109844", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058448462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/109947", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058448557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/109983", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058448593"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/110825", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058449404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/110827", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058449406"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/111423", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058450002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/111604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058450183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/111714", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058450293"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1982-05", 
        "datePublishedReg": "1982-05-01", 
        "description": "The theory of the adiabatic invariant predicts the long term evolution of mechanical systems with slowly varying parameters. Unfortunately, it is not valid when the system goes across a critical trajectory. This case is important because it can lead to capture into resonance. Analysing the motion in the vincinity of the critical trajectory, we are able to give general formulae for the probability of capture and to show that in general, the adiabatic invariant is conserved (allowance being made for the geometrical discontinuity in its definition at the critical orbit).", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01228946", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136436", 
            "issn": [
              "0008-8714", 
              "0923-2958"
            ], 
            "name": "Celestial Mechanics and Dynamical Astronomy", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "27"
          }
        ], 
        "name": "Capture into resonance: An extension of the use of adiabatic invariants", 
        "pagination": "3-22", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0a3000d72dcdd8cdcc2f5963c7468fe6328f57c314171d19e7dde186bc0cd39a"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01228946"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002139158"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01228946", 
          "https://app.dimensions.ai/details/publication/pub.1002139158"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46738_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01228946"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01228946'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01228946'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01228946'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01228946'


     

    This table displays all metadata directly associated to this object as RDF triples.

    127 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01228946 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nf2d65485ddcb49c09007fdc1c31b6745
    4 schema:citation sg:pub.10.1007/bf01230164
    5 sg:pub.10.1007/bf01230171
    6 sg:pub.10.1007/bf01230222
    7 sg:pub.10.1007/bf01329333
    8 sg:pub.10.1038/208575a0
    9 sg:pub.10.1038/279767a0
    10 https://doi.org/10.1016/0083-6656(77)90031-9
    11 https://doi.org/10.1029/jb084ib01p00243
    12 https://doi.org/10.1086/109844
    13 https://doi.org/10.1086/109947
    14 https://doi.org/10.1086/109983
    15 https://doi.org/10.1086/110825
    16 https://doi.org/10.1086/110827
    17 https://doi.org/10.1086/111423
    18 https://doi.org/10.1086/111604
    19 https://doi.org/10.1086/111714
    20 https://doi.org/10.1093/mnras/130.3.159
    21 https://doi.org/10.1093/mnras/160.2.169
    22 https://doi.org/10.1093/mnras/166.1.165
    23 https://doi.org/10.1146/annurev.aa.14.090176.001243
    24 schema:datePublished 1982-05
    25 schema:datePublishedReg 1982-05-01
    26 schema:description The theory of the adiabatic invariant predicts the long term evolution of mechanical systems with slowly varying parameters. Unfortunately, it is not valid when the system goes across a critical trajectory. This case is important because it can lead to capture into resonance. Analysing the motion in the vincinity of the critical trajectory, we are able to give general formulae for the probability of capture and to show that in general, the adiabatic invariant is conserved (allowance being made for the geometrical discontinuity in its definition at the critical orbit).
    27 schema:genre research_article
    28 schema:inLanguage en
    29 schema:isAccessibleForFree false
    30 schema:isPartOf N3df721d6073d46ab96ba56e064a70496
    31 Nce8e940509674458b60d5ae98bf6743e
    32 sg:journal.1136436
    33 schema:name Capture into resonance: An extension of the use of adiabatic invariants
    34 schema:pagination 3-22
    35 schema:productId N203fecae9a9f4c20a808bc40c8e18530
    36 N7c36ecd19cb9436c9d940e02eab11ebc
    37 Nc6015a06b0ac467d9b37e5582a206975
    38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002139158
    39 https://doi.org/10.1007/bf01228946
    40 schema:sdDatePublished 2019-04-11T13:27
    41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    42 schema:sdPublisher Nd2e82ac237bd41918f89f46bb2ffbe79
    43 schema:url http://link.springer.com/10.1007/BF01228946
    44 sgo:license sg:explorer/license/
    45 sgo:sdDataset articles
    46 rdf:type schema:ScholarlyArticle
    47 N203fecae9a9f4c20a808bc40c8e18530 schema:name readcube_id
    48 schema:value 0a3000d72dcdd8cdcc2f5963c7468fe6328f57c314171d19e7dde186bc0cd39a
    49 rdf:type schema:PropertyValue
    50 N3df721d6073d46ab96ba56e064a70496 schema:issueNumber 1
    51 rdf:type schema:PublicationIssue
    52 N7c36ecd19cb9436c9d940e02eab11ebc schema:name dimensions_id
    53 schema:value pub.1002139158
    54 rdf:type schema:PropertyValue
    55 Nc6015a06b0ac467d9b37e5582a206975 schema:name doi
    56 schema:value 10.1007/bf01228946
    57 rdf:type schema:PropertyValue
    58 Nce8e940509674458b60d5ae98bf6743e schema:volumeNumber 27
    59 rdf:type schema:PublicationVolume
    60 Nd2e82ac237bd41918f89f46bb2ffbe79 schema:name Springer Nature - SN SciGraph project
    61 rdf:type schema:Organization
    62 Nf2d65485ddcb49c09007fdc1c31b6745 rdf:first sg:person.012411554565.81
    63 rdf:rest rdf:nil
    64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Mathematical Sciences
    66 rdf:type schema:DefinedTerm
    67 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Pure Mathematics
    69 rdf:type schema:DefinedTerm
    70 sg:journal.1136436 schema:issn 0008-8714
    71 0923-2958
    72 schema:name Celestial Mechanics and Dynamical Astronomy
    73 rdf:type schema:Periodical
    74 sg:person.012411554565.81 schema:affiliation https://www.grid.ac/institutes/grid.6520.1
    75 schema:familyName Henrard
    76 schema:givenName J.
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012411554565.81
    78 rdf:type schema:Person
    79 sg:pub.10.1007/bf01230164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009825838
    80 https://doi.org/10.1007/bf01230164
    81 rdf:type schema:CreativeWork
    82 sg:pub.10.1007/bf01230171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027217087
    83 https://doi.org/10.1007/bf01230171
    84 rdf:type schema:CreativeWork
    85 sg:pub.10.1007/bf01230222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022356147
    86 https://doi.org/10.1007/bf01230222
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1007/bf01329333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032390147
    89 https://doi.org/10.1007/bf01329333
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1038/208575a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017877812
    92 https://doi.org/10.1038/208575a0
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1038/279767a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050131686
    95 https://doi.org/10.1038/279767a0
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1016/0083-6656(77)90031-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008737785
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1029/jb084ib01p00243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034383583
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1086/109844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058448462
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1086/109947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058448557
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1086/109983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058448593
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1086/110825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058449404
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1086/110827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058449406
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1086/111423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058450002
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1086/111604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058450183
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1086/111714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058450293
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1093/mnras/130.3.159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027066766
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1093/mnras/160.2.169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041408964
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1093/mnras/166.1.165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021288371
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1146/annurev.aa.14.090176.001243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017822711
    124 rdf:type schema:CreativeWork
    125 https://www.grid.ac/institutes/grid.6520.1 schema:alternateName University of Namur
    126 schema:name Department of Mathematics, Facultés Universitaires de Namur, Namur, Belgium
    127 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...