Expansion formulae in canonical transformations depending on a small parameter View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1969-06

AUTHORS

Ahmed Aly Kamel

ABSTRACT

The theory of perturbation based on Lie transforms is considered. Deprit's equation is reduced to a form which enables us to generate simplified general recursion formulae. These expansions are then modified to speed up the implementation of such perturbation theory in the computerized symbolic manipulation.

PAGES

190-199

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01228838

DOI

http://dx.doi.org/10.1007/bf01228838

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042537547


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Stanford University, Stanford, Calif., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kamel", 
        "givenName": "Ahmed Aly", 
        "id": "sg:person.013345305565.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013345305565.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0019-1035(67)90032-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000065078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0019-1035(67)90032-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000065078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/3.4725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005239323"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1969-06", 
    "datePublishedReg": "1969-06-01", 
    "description": "The theory of perturbation based on Lie transforms is considered. Deprit's equation is reduced to a form which enables us to generate simplified general recursion formulae. These expansions are then modified to speed up the implementation of such perturbation theory in the computerized symbolic manipulation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01228838", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136436", 
        "issn": [
          "0008-8714", 
          "0923-2958"
        ], 
        "name": "Celestial Mechanics and Dynamical Astronomy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "Expansion formulae in canonical transformations depending on a small parameter", 
    "pagination": "190-199", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ca9fd65496897f18bc721998b77bbac9f55f071562cdbce5be1418dc1cb0eb19"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01228838"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042537547"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01228838", 
      "https://app.dimensions.ai/details/publication/pub.1042537547"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46738_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01228838"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01228838'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01228838'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01228838'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01228838'


 

This table displays all metadata directly associated to this object as RDF triples.

67 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01228838 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N6d8580fd1d0745b79215311166c4d4cf
4 schema:citation https://doi.org/10.1016/0019-1035(67)90032-2
5 https://doi.org/10.2514/3.4725
6 schema:datePublished 1969-06
7 schema:datePublishedReg 1969-06-01
8 schema:description The theory of perturbation based on Lie transforms is considered. Deprit's equation is reduced to a form which enables us to generate simplified general recursion formulae. These expansions are then modified to speed up the implementation of such perturbation theory in the computerized symbolic manipulation.
9 schema:genre research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N5b5e94ac002145729848f6b6402c6d4d
13 Nb256ad8ee9774951b4d5842a53957a09
14 sg:journal.1136436
15 schema:name Expansion formulae in canonical transformations depending on a small parameter
16 schema:pagination 190-199
17 schema:productId N09be65dccaf840b2891c9e3f4f337b55
18 N16bb106a52ec40fba0c4f81317668a14
19 N9a008520b656429b90890d4d821cfab8
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042537547
21 https://doi.org/10.1007/bf01228838
22 schema:sdDatePublished 2019-04-11T13:27
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N38ea2536588e430ca3581f329211f91f
25 schema:url http://link.springer.com/10.1007/BF01228838
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N09be65dccaf840b2891c9e3f4f337b55 schema:name dimensions_id
30 schema:value pub.1042537547
31 rdf:type schema:PropertyValue
32 N16bb106a52ec40fba0c4f81317668a14 schema:name readcube_id
33 schema:value ca9fd65496897f18bc721998b77bbac9f55f071562cdbce5be1418dc1cb0eb19
34 rdf:type schema:PropertyValue
35 N38ea2536588e430ca3581f329211f91f schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N5b5e94ac002145729848f6b6402c6d4d schema:volumeNumber 1
38 rdf:type schema:PublicationVolume
39 N6d8580fd1d0745b79215311166c4d4cf rdf:first sg:person.013345305565.30
40 rdf:rest rdf:nil
41 N9a008520b656429b90890d4d821cfab8 schema:name doi
42 schema:value 10.1007/bf01228838
43 rdf:type schema:PropertyValue
44 Nb256ad8ee9774951b4d5842a53957a09 schema:issueNumber 2
45 rdf:type schema:PublicationIssue
46 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
47 schema:name Mathematical Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
50 schema:name Pure Mathematics
51 rdf:type schema:DefinedTerm
52 sg:journal.1136436 schema:issn 0008-8714
53 0923-2958
54 schema:name Celestial Mechanics and Dynamical Astronomy
55 rdf:type schema:Periodical
56 sg:person.013345305565.30 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
57 schema:familyName Kamel
58 schema:givenName Ahmed Aly
59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013345305565.30
60 rdf:type schema:Person
61 https://doi.org/10.1016/0019-1035(67)90032-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000065078
62 rdf:type schema:CreativeWork
63 https://doi.org/10.2514/3.4725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005239323
64 rdf:type schema:CreativeWork
65 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
66 schema:name Stanford University, Stanford, Calif., USA
67 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...