The problem of the critical inclination revisited View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1975-05

AUTHORS

Alan H. Jupp

ABSTRACT

The behaviour of the argument of the pericentre is investigated for the orbit of an artificial satellite which is moving under the potential when the inclination of the orbit is close to thecritical value tan−1 2. The theory is developed to first order and it is applicable to all values of the eccentricity, with the exception of those in the neighbourhood of zero and unity. Four principal types of behaviour are noted and these are illustrated in appropriate phase-plane diagrams. It is shown that the two types which exhibit double libration in the argument of the pericentre are restricted to a relatively small domain in the (a, e)-plane of possible motions. Moreover, it is demonstrated that for double libration to occur it is necessary, but not sufficient, that\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$e > \sqrt 6/13$$ \end{document}. The ranges of values of the inclination for which libration of the pericentre is a possibility are given for the more important cases.The general results are applied to the specific case of artificial Earth satellites whose orbits are inclined to the equator at angles close to the value of the critical inclination. More... »

PAGES

361-378

References to SciGraph publications

  • 1973-01. The perturbed ideal resonance problem in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1973-08. The global solution of the problem of the critical inclination in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1972-09. Normality condition in the ideal resonance problem in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1969-03. How critical is the critical inclination? in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01228812

    DOI

    http://dx.doi.org/10.1007/bf01228812

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046339924


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Dept. of Applied Mathematics and Theoretical Physics, University of Liverpool, P.O. Box 147, L69 3BX, Liverpool, England", 
              "id": "http://www.grid.ac/institutes/grid.10025.36", 
              "name": [
                "Dept. of Applied Mathematics and Theoretical Physics, University of Liverpool, P.O. Box 147, L69 3BX, Liverpool, England"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jupp", 
            "givenName": "Alan H.", 
            "id": "sg:person.07420122720.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07420122720.37"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01243510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046897551", 
              "https://doi.org/10.1007/bf01243510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01228388", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005645418", 
              "https://doi.org/10.1007/bf01228388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039960985", 
              "https://doi.org/10.1007/bf01230627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01227778", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042243310", 
              "https://doi.org/10.1007/bf01227778"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1975-05", 
        "datePublishedReg": "1975-05-01", 
        "description": "The behaviour of the argument of the pericentre is investigated for the orbit of an artificial satellite which is moving under the potential when the inclination of the orbit is close to thecritical value tan\u22121 2. The theory is developed to first order and it is applicable to all values of the eccentricity, with the exception of those in the neighbourhood of zero and unity. Four principal types of behaviour are noted and these are illustrated in appropriate phase-plane diagrams. It is shown that the two types which exhibit double libration in the argument of the pericentre are restricted to a relatively small domain in the (a, e)-plane of possible motions. Moreover, it is demonstrated that for double libration to occur it is necessary, but not sufficient, that\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$e > \\sqrt 6/13$$\n\\end{document}. The ranges of values of the inclination for which libration of the pericentre is a possibility are given for the more important cases.The general results are applied to the specific case of artificial Earth satellites whose orbits are inclined to the equator at angles close to the value of the critical inclination.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf01228812", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136436", 
            "issn": [
              "0008-8714", 
              "0923-2958"
            ], 
            "name": "Celestial Mechanics and Dynamical Astronomy", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "11"
          }
        ], 
        "keywords": [
          "possible motions", 
          "specific case", 
          "satellite", 
          "important case", 
          "artificial satellites", 
          "domain", 
          "neighborhood", 
          "artificial earth satellites", 
          "order", 
          "motion", 
          "diagram", 
          "small domains", 
          "behavior", 
          "types", 
          "earth satellites", 
          "general results", 
          "results", 
          "values", 
          "theory", 
          "possibility", 
          "cases", 
          "principal types", 
          "critical inclination", 
          "argument", 
          "range of values", 
          "potential", 
          "inclination", 
          "phase-plane diagrams", 
          "angle", 
          "first order", 
          "range", 
          "orbit", 
          "eccentricity", 
          "exception", 
          "equator", 
          "pericentre", 
          "unity", 
          "libration", 
          "problem", 
          "thecritical value", 
          "appropriate phase-plane diagrams", 
          "double libration"
        ], 
        "name": "The problem of the critical inclination revisited", 
        "pagination": "361-378", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046339924"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01228812"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01228812", 
          "https://app.dimensions.ai/details/publication/pub.1046339924"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_112.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf01228812"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01228812'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01228812'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01228812'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01228812'


     

    This table displays all metadata directly associated to this object as RDF triples.

    116 TRIPLES      22 PREDICATES      72 URIs      60 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01228812 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N7eeb9d250cd244f2b521b0732bee2751
    4 schema:citation sg:pub.10.1007/bf01227778
    5 sg:pub.10.1007/bf01228388
    6 sg:pub.10.1007/bf01230627
    7 sg:pub.10.1007/bf01243510
    8 schema:datePublished 1975-05
    9 schema:datePublishedReg 1975-05-01
    10 schema:description The behaviour of the argument of the pericentre is investigated for the orbit of an artificial satellite which is moving under the potential when the inclination of the orbit is close to thecritical value tan−1 2. The theory is developed to first order and it is applicable to all values of the eccentricity, with the exception of those in the neighbourhood of zero and unity. Four principal types of behaviour are noted and these are illustrated in appropriate phase-plane diagrams. It is shown that the two types which exhibit double libration in the argument of the pericentre are restricted to a relatively small domain in the (a, e)-plane of possible motions. Moreover, it is demonstrated that for double libration to occur it is necessary, but not sufficient, that\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$e > \sqrt 6/13$$ \end{document}. The ranges of values of the inclination for which libration of the pericentre is a possibility are given for the more important cases.The general results are applied to the specific case of artificial Earth satellites whose orbits are inclined to the equator at angles close to the value of the critical inclination.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N6bca33733e534fcc9afae90b11d6bdd8
    15 Nb629c0857747408486e8eb6701b8ab99
    16 sg:journal.1136436
    17 schema:keywords angle
    18 appropriate phase-plane diagrams
    19 argument
    20 artificial earth satellites
    21 artificial satellites
    22 behavior
    23 cases
    24 critical inclination
    25 diagram
    26 domain
    27 double libration
    28 earth satellites
    29 eccentricity
    30 equator
    31 exception
    32 first order
    33 general results
    34 important case
    35 inclination
    36 libration
    37 motion
    38 neighborhood
    39 orbit
    40 order
    41 pericentre
    42 phase-plane diagrams
    43 possibility
    44 possible motions
    45 potential
    46 principal types
    47 problem
    48 range
    49 range of values
    50 results
    51 satellite
    52 small domains
    53 specific case
    54 thecritical value
    55 theory
    56 types
    57 unity
    58 values
    59 schema:name The problem of the critical inclination revisited
    60 schema:pagination 361-378
    61 schema:productId N9118678f2d6246348c0a7cc81a3adb99
    62 N972f661bb8b84b80b403cadd72547eea
    63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046339924
    64 https://doi.org/10.1007/bf01228812
    65 schema:sdDatePublished 2022-01-01T18:00
    66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    67 schema:sdPublisher N935947398d0d460aa6921b243181501b
    68 schema:url https://doi.org/10.1007/bf01228812
    69 sgo:license sg:explorer/license/
    70 sgo:sdDataset articles
    71 rdf:type schema:ScholarlyArticle
    72 N6bca33733e534fcc9afae90b11d6bdd8 schema:issueNumber 3
    73 rdf:type schema:PublicationIssue
    74 N7eeb9d250cd244f2b521b0732bee2751 rdf:first sg:person.07420122720.37
    75 rdf:rest rdf:nil
    76 N9118678f2d6246348c0a7cc81a3adb99 schema:name doi
    77 schema:value 10.1007/bf01228812
    78 rdf:type schema:PropertyValue
    79 N935947398d0d460aa6921b243181501b schema:name Springer Nature - SN SciGraph project
    80 rdf:type schema:Organization
    81 N972f661bb8b84b80b403cadd72547eea schema:name dimensions_id
    82 schema:value pub.1046339924
    83 rdf:type schema:PropertyValue
    84 Nb629c0857747408486e8eb6701b8ab99 schema:volumeNumber 11
    85 rdf:type schema:PublicationVolume
    86 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Mathematical Sciences
    88 rdf:type schema:DefinedTerm
    89 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Applied Mathematics
    91 rdf:type schema:DefinedTerm
    92 sg:journal.1136436 schema:issn 0008-8714
    93 0923-2958
    94 schema:name Celestial Mechanics and Dynamical Astronomy
    95 schema:publisher Springer Nature
    96 rdf:type schema:Periodical
    97 sg:person.07420122720.37 schema:affiliation grid-institutes:grid.10025.36
    98 schema:familyName Jupp
    99 schema:givenName Alan H.
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07420122720.37
    101 rdf:type schema:Person
    102 sg:pub.10.1007/bf01227778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042243310
    103 https://doi.org/10.1007/bf01227778
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/bf01228388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005645418
    106 https://doi.org/10.1007/bf01228388
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/bf01230627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039960985
    109 https://doi.org/10.1007/bf01230627
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/bf01243510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046897551
    112 https://doi.org/10.1007/bf01243510
    113 rdf:type schema:CreativeWork
    114 grid-institutes:grid.10025.36 schema:alternateName Dept. of Applied Mathematics and Theoretical Physics, University of Liverpool, P.O. Box 147, L69 3BX, Liverpool, England
    115 schema:name Dept. of Applied Mathematics and Theoretical Physics, University of Liverpool, P.O. Box 147, L69 3BX, Liverpool, England
    116 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...