Analytical methods for the orbits of artificial satellites of the Moon View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1971-06

AUTHORS

V. A. Brumberg, L. S. Evdokimova, N. G. Kochina

ABSTRACT

The motion of a close artificial satellite of the Moon is considered. The principal perturbations taken into account are caused by the nonsphericity of the Moon and the attraction of the Earth and the Sun. To begin with, the expansions of the disturbing functions due to the nonsphericity of the primary body and the action of the disturbing mass-point body have been derived. The second expansion is produced in terms of the Keplerian elements of a satellite and the spherical coordinates of the disturbing body. Both expansions are valid for an arbitrary reference plane. The motion of a satellite of the Moon is studied in the selenocentric coordinate system referred to the Lunar equator and rotating with respect to the fixed ecliptic system. However, the coordinate exes in the equatorial plane are chosen so that the angular speed of rotation of the system is small. The motion of the satellite is described by means of the contact elements which enable one to utilize the conventional Lagrange's planetary equations and may be regarded as the generalization of the notion of the osculating elements to the case of the disturbing function depending not only o the coordinates and the time but on the velocities as well. Two methods are proposed to represent the motion of Lunar satellites over long intervals of time: the von Zeipel method and the Euler method of analytical integration with application of the variation-of-elements technique at every step of integration. The second method is exposed in great detail. More... »

PAGES

197-221

References to SciGraph publications

  • 1970-03. A semi-analytic theory for the motion of a lunar satellite in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1970-09. The motion of a lunar satellite in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01228033

    DOI

    http://dx.doi.org/10.1007/bf01228033

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1035069574


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Geomatic Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Institute of Theoretical Astronomy, Leningrad, U.S.S.R."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brumberg", 
            "givenName": "V. A.", 
            "id": "sg:person.013527777775.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013527777775.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Institute of Theoretical Astronomy, Leningrad, U.S.S.R."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Evdokimova", 
            "givenName": "L. S.", 
            "id": "sg:person.010335531206.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010335531206.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Institute of Theoretical Astronomy, Leningrad, U.S.S.R."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kochina", 
            "givenName": "N. G.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1111/j.1365-246x.1965.tb03057.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000061131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-246x.1961.tb00417.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001186195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01231142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008911583", 
              "https://doi.org/10.1007/bf01231142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01231142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008911583", 
              "https://doi.org/10.1007/bf01231142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230432", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017560558", 
              "https://doi.org/10.1007/bf01230432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230432", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017560558", 
              "https://doi.org/10.1007/bf01230432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0019-1035(68)90009-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019722192"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0019-1035(68)90009-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019722192"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-1-4832-3240-9.50006-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026681473"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0032-0633(68)90003-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036308926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0032-0633(68)90003-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036308926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0019-1035(68)90008-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050145029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0019-1035(68)90008-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050145029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0074180900105698", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054862899"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/108729", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058447409"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2514/3.29606", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070867853"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1971-06", 
        "datePublishedReg": "1971-06-01", 
        "description": "The motion of a close artificial satellite of the Moon is considered. The principal perturbations taken into account are caused by the nonsphericity of the Moon and the attraction of the Earth and the Sun. To begin with, the expansions of the disturbing functions due to the nonsphericity of the primary body and the action of the disturbing mass-point body have been derived. The second expansion is produced in terms of the Keplerian elements of a satellite and the spherical coordinates of the disturbing body. Both expansions are valid for an arbitrary reference plane. The motion of a satellite of the Moon is studied in the selenocentric coordinate system referred to the Lunar equator and rotating with respect to the fixed ecliptic system. However, the coordinate exes in the equatorial plane are chosen so that the angular speed of rotation of the system is small. The motion of the satellite is described by means of the contact elements which enable one to utilize the conventional Lagrange's planetary equations and may be regarded as the generalization of the notion of the osculating elements to the case of the disturbing function depending not only o the coordinates and the time but on the velocities as well. Two methods are proposed to represent the motion of Lunar satellites over long intervals of time: the von Zeipel method and the Euler method of analytical integration with application of the variation-of-elements technique at every step of integration. The second method is exposed in great detail.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01228033", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136436", 
            "issn": [
              "0008-8714", 
              "0923-2958"
            ], 
            "name": "Celestial Mechanics and Dynamical Astronomy", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "3"
          }
        ], 
        "name": "Analytical methods for the orbits of artificial satellites of the Moon", 
        "pagination": "197-221", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a70ee956eb52a21dc9e9dd2142ad143da0f040f0c3bc24f2c1215016c7439fe3"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01228033"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1035069574"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01228033", 
          "https://app.dimensions.ai/details/publication/pub.1035069574"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46751_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01228033"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01228033'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01228033'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01228033'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01228033'


     

    This table displays all metadata directly associated to this object as RDF triples.

    112 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01228033 schema:about anzsrc-for:09
    2 anzsrc-for:0909
    3 schema:author N3ee0ba931e3947d3adc1fa175854c040
    4 schema:citation sg:pub.10.1007/bf01230432
    5 sg:pub.10.1007/bf01231142
    6 https://doi.org/10.1016/0019-1035(68)90008-0
    7 https://doi.org/10.1016/0019-1035(68)90009-2
    8 https://doi.org/10.1016/0032-0633(68)90003-2
    9 https://doi.org/10.1016/b978-1-4832-3240-9.50006-7
    10 https://doi.org/10.1017/s0074180900105698
    11 https://doi.org/10.1086/108729
    12 https://doi.org/10.1111/j.1365-246x.1961.tb00417.x
    13 https://doi.org/10.1111/j.1365-246x.1965.tb03057.x
    14 https://doi.org/10.2514/3.29606
    15 schema:datePublished 1971-06
    16 schema:datePublishedReg 1971-06-01
    17 schema:description The motion of a close artificial satellite of the Moon is considered. The principal perturbations taken into account are caused by the nonsphericity of the Moon and the attraction of the Earth and the Sun. To begin with, the expansions of the disturbing functions due to the nonsphericity of the primary body and the action of the disturbing mass-point body have been derived. The second expansion is produced in terms of the Keplerian elements of a satellite and the spherical coordinates of the disturbing body. Both expansions are valid for an arbitrary reference plane. The motion of a satellite of the Moon is studied in the selenocentric coordinate system referred to the Lunar equator and rotating with respect to the fixed ecliptic system. However, the coordinate exes in the equatorial plane are chosen so that the angular speed of rotation of the system is small. The motion of the satellite is described by means of the contact elements which enable one to utilize the conventional Lagrange's planetary equations and may be regarded as the generalization of the notion of the osculating elements to the case of the disturbing function depending not only o the coordinates and the time but on the velocities as well. Two methods are proposed to represent the motion of Lunar satellites over long intervals of time: the von Zeipel method and the Euler method of analytical integration with application of the variation-of-elements technique at every step of integration. The second method is exposed in great detail.
    18 schema:genre research_article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N1a1eef95ff6a44bea0fd61788f25c8fe
    22 Ne2d15a74bb564361b4fb5ec00582a67d
    23 sg:journal.1136436
    24 schema:name Analytical methods for the orbits of artificial satellites of the Moon
    25 schema:pagination 197-221
    26 schema:productId N1fe0ea4a76d4474bae423835daf55983
    27 Nc80e3113ac6c435c997406530777371a
    28 Nf705c6da85ca4aeaa4d3f82beca38820
    29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035069574
    30 https://doi.org/10.1007/bf01228033
    31 schema:sdDatePublished 2019-04-11T13:30
    32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    33 schema:sdPublisher Nfc7a0c2a28444fffa9795788fb4c5460
    34 schema:url http://link.springer.com/10.1007/BF01228033
    35 sgo:license sg:explorer/license/
    36 sgo:sdDataset articles
    37 rdf:type schema:ScholarlyArticle
    38 N025bc3f52c914e3ab085835ca753a8e6 rdf:first N67dae4633f3f4275a74e951d41ceb8d9
    39 rdf:rest rdf:nil
    40 N1a1eef95ff6a44bea0fd61788f25c8fe schema:issueNumber 2
    41 rdf:type schema:PublicationIssue
    42 N1fe0ea4a76d4474bae423835daf55983 schema:name doi
    43 schema:value 10.1007/bf01228033
    44 rdf:type schema:PropertyValue
    45 N3ee0ba931e3947d3adc1fa175854c040 rdf:first sg:person.013527777775.06
    46 rdf:rest Nfb433017326147088948379de899fd49
    47 N67dae4633f3f4275a74e951d41ceb8d9 schema:affiliation N9d0ee88f4ef84c068005cfecdbb86a65
    48 schema:familyName Kochina
    49 schema:givenName N. G.
    50 rdf:type schema:Person
    51 N9d0ee88f4ef84c068005cfecdbb86a65 schema:name Institute of Theoretical Astronomy, Leningrad, U.S.S.R.
    52 rdf:type schema:Organization
    53 Nc22972dd66c341e7a8a51071de008761 schema:name Institute of Theoretical Astronomy, Leningrad, U.S.S.R.
    54 rdf:type schema:Organization
    55 Nc80e3113ac6c435c997406530777371a schema:name readcube_id
    56 schema:value a70ee956eb52a21dc9e9dd2142ad143da0f040f0c3bc24f2c1215016c7439fe3
    57 rdf:type schema:PropertyValue
    58 Nda66a869a1c14252a1fddcd811c4f28d schema:name Institute of Theoretical Astronomy, Leningrad, U.S.S.R.
    59 rdf:type schema:Organization
    60 Ne2d15a74bb564361b4fb5ec00582a67d schema:volumeNumber 3
    61 rdf:type schema:PublicationVolume
    62 Nf705c6da85ca4aeaa4d3f82beca38820 schema:name dimensions_id
    63 schema:value pub.1035069574
    64 rdf:type schema:PropertyValue
    65 Nfb433017326147088948379de899fd49 rdf:first sg:person.010335531206.23
    66 rdf:rest N025bc3f52c914e3ab085835ca753a8e6
    67 Nfc7a0c2a28444fffa9795788fb4c5460 schema:name Springer Nature - SN SciGraph project
    68 rdf:type schema:Organization
    69 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Engineering
    71 rdf:type schema:DefinedTerm
    72 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Geomatic Engineering
    74 rdf:type schema:DefinedTerm
    75 sg:journal.1136436 schema:issn 0008-8714
    76 0923-2958
    77 schema:name Celestial Mechanics and Dynamical Astronomy
    78 rdf:type schema:Periodical
    79 sg:person.010335531206.23 schema:affiliation Nda66a869a1c14252a1fddcd811c4f28d
    80 schema:familyName Evdokimova
    81 schema:givenName L. S.
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010335531206.23
    83 rdf:type schema:Person
    84 sg:person.013527777775.06 schema:affiliation Nc22972dd66c341e7a8a51071de008761
    85 schema:familyName Brumberg
    86 schema:givenName V. A.
    87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013527777775.06
    88 rdf:type schema:Person
    89 sg:pub.10.1007/bf01230432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017560558
    90 https://doi.org/10.1007/bf01230432
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/bf01231142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008911583
    93 https://doi.org/10.1007/bf01231142
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1016/0019-1035(68)90008-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050145029
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1016/0019-1035(68)90009-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019722192
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1016/0032-0633(68)90003-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036308926
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1016/b978-1-4832-3240-9.50006-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026681473
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1017/s0074180900105698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054862899
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1086/108729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058447409
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1111/j.1365-246x.1961.tb00417.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001186195
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1111/j.1365-246x.1965.tb03057.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000061131
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.2514/3.29606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070867853
    112 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...