Construction of a general planetary theory of the first order View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1973-11

AUTHORS

V. A. Brumberg, J. Chapront

ABSTRACT

All the necessary formulae for constructing a general solution for the motion of a planet, in rectangular coordinates, at the first order of the disturbing masses, in purely literal form in eccentricities and inclinations, are given. The authors present the transformation formulae in the two-body problem which give the correspondence between the constants of integration introduced in the theory and the classical keplerian elements. The practical elaboration of the algorithm and some partial results for the couple of planets Jupiter and Saturn are described. More... »

PAGES

335-355

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01227805

DOI

http://dx.doi.org/10.1007/bf01227805

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011684295


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institute of Theoretical Astronomy, Leningrad"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brumberg", 
        "givenName": "V. A.", 
        "id": "sg:person.013527777775.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013527777775.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Bureau des Longitudes, Paris"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chapront", 
        "givenName": "J.", 
        "id": "sg:person.013134336621.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013134336621.31"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1973-11", 
    "datePublishedReg": "1973-11-01", 
    "description": "All the necessary formulae for constructing a general solution for the motion of a planet, in rectangular coordinates, at the first order of the disturbing masses, in purely literal form in eccentricities and inclinations, are given. The authors present the transformation formulae in the two-body problem which give the correspondence between the constants of integration introduced in the theory and the classical keplerian elements. The practical elaboration of the algorithm and some partial results for the couple of planets Jupiter and Saturn are described.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01227805", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136436", 
        "issn": [
          "0008-8714", 
          "0923-2958"
        ], 
        "name": "Celestial Mechanics and Dynamical Astronomy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Construction of a general planetary theory of the first order", 
    "pagination": "335-355", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "37ab618b9b3d0b275d5fe9cf44fe692414a48dd179ea0b8551816388a79e03bf"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01227805"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011684295"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01227805", 
      "https://app.dimensions.ai/details/publication/pub.1011684295"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01227805"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01227805'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01227805'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01227805'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01227805'


 

This table displays all metadata directly associated to this object as RDF triples.

69 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01227805 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nfbd834d38bf44659b837c627c7141e15
4 schema:datePublished 1973-11
5 schema:datePublishedReg 1973-11-01
6 schema:description All the necessary formulae for constructing a general solution for the motion of a planet, in rectangular coordinates, at the first order of the disturbing masses, in purely literal form in eccentricities and inclinations, are given. The authors present the transformation formulae in the two-body problem which give the correspondence between the constants of integration introduced in the theory and the classical keplerian elements. The practical elaboration of the algorithm and some partial results for the couple of planets Jupiter and Saturn are described.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N7acc61e76eeb4adb95ef6580a5ae4ccf
11 Neca7ed80583b48e287bf7efca689cba6
12 sg:journal.1136436
13 schema:name Construction of a general planetary theory of the first order
14 schema:pagination 335-355
15 schema:productId N1ebc11b582994736a644fcaa027564c2
16 N3c0698e1e0d44786b98a0adbc37fa720
17 Nb00163f10f334fcf972824f2e7e644ee
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011684295
19 https://doi.org/10.1007/bf01227805
20 schema:sdDatePublished 2019-04-10T23:20
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N322c273bc3c64eb2af0526da9582eee1
23 schema:url http://link.springer.com/10.1007/BF01227805
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N1d85b10abb544e1d878c7b7fb31b6cd9 rdf:first sg:person.013134336621.31
28 rdf:rest rdf:nil
29 N1ebc11b582994736a644fcaa027564c2 schema:name dimensions_id
30 schema:value pub.1011684295
31 rdf:type schema:PropertyValue
32 N2bfe590b98b84bdfa6d2525cdd0569a9 schema:name Bureau des Longitudes, Paris
33 rdf:type schema:Organization
34 N322c273bc3c64eb2af0526da9582eee1 schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 N3c0698e1e0d44786b98a0adbc37fa720 schema:name doi
37 schema:value 10.1007/bf01227805
38 rdf:type schema:PropertyValue
39 N7acc61e76eeb4adb95ef6580a5ae4ccf schema:volumeNumber 8
40 rdf:type schema:PublicationVolume
41 N8f48ab4fc78544df998fbaf062a32b81 schema:name Institute of Theoretical Astronomy, Leningrad
42 rdf:type schema:Organization
43 Nb00163f10f334fcf972824f2e7e644ee schema:name readcube_id
44 schema:value 37ab618b9b3d0b275d5fe9cf44fe692414a48dd179ea0b8551816388a79e03bf
45 rdf:type schema:PropertyValue
46 Neca7ed80583b48e287bf7efca689cba6 schema:issueNumber 3
47 rdf:type schema:PublicationIssue
48 Nfbd834d38bf44659b837c627c7141e15 rdf:first sg:person.013527777775.06
49 rdf:rest N1d85b10abb544e1d878c7b7fb31b6cd9
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
54 schema:name Numerical and Computational Mathematics
55 rdf:type schema:DefinedTerm
56 sg:journal.1136436 schema:issn 0008-8714
57 0923-2958
58 schema:name Celestial Mechanics and Dynamical Astronomy
59 rdf:type schema:Periodical
60 sg:person.013134336621.31 schema:affiliation N2bfe590b98b84bdfa6d2525cdd0569a9
61 schema:familyName Chapront
62 schema:givenName J.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013134336621.31
64 rdf:type schema:Person
65 sg:person.013527777775.06 schema:affiliation N8f48ab4fc78544df998fbaf062a32b81
66 schema:familyName Brumberg
67 schema:givenName V. A.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013527777775.06
69 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...