Construction of a general planetary theory of the first order View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1973-11

AUTHORS

V. A. Brumberg, J. Chapront

ABSTRACT

All the necessary formulae for constructing a general solution for the motion of a planet, in rectangular coordinates, at the first order of the disturbing masses, in purely literal form in eccentricities and inclinations, are given. The authors present the transformation formulae in the two-body problem which give the correspondence between the constants of integration introduced in the theory and the classical keplerian elements. The practical elaboration of the algorithm and some partial results for the couple of planets Jupiter and Saturn are described. More... »

PAGES

335-355

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01227805

DOI

http://dx.doi.org/10.1007/bf01227805

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011684295


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institute of Theoretical Astronomy, Leningrad"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brumberg", 
        "givenName": "V. A.", 
        "id": "sg:person.013527777775.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013527777775.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Bureau des Longitudes, Paris"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chapront", 
        "givenName": "J.", 
        "id": "sg:person.013134336621.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013134336621.31"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1973-11", 
    "datePublishedReg": "1973-11-01", 
    "description": "All the necessary formulae for constructing a general solution for the motion of a planet, in rectangular coordinates, at the first order of the disturbing masses, in purely literal form in eccentricities and inclinations, are given. The authors present the transformation formulae in the two-body problem which give the correspondence between the constants of integration introduced in the theory and the classical keplerian elements. The practical elaboration of the algorithm and some partial results for the couple of planets Jupiter and Saturn are described.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01227805", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136436", 
        "issn": [
          "0008-8714", 
          "0923-2958"
        ], 
        "name": "Celestial Mechanics and Dynamical Astronomy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Construction of a general planetary theory of the first order", 
    "pagination": "335-355", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "37ab618b9b3d0b275d5fe9cf44fe692414a48dd179ea0b8551816388a79e03bf"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01227805"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011684295"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01227805", 
      "https://app.dimensions.ai/details/publication/pub.1011684295"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000494.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01227805"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01227805'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01227805'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01227805'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01227805'


 

This table displays all metadata directly associated to this object as RDF triples.

69 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01227805 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N2ec763608328444585b65c64ddfcd82a
4 schema:datePublished 1973-11
5 schema:datePublishedReg 1973-11-01
6 schema:description All the necessary formulae for constructing a general solution for the motion of a planet, in rectangular coordinates, at the first order of the disturbing masses, in purely literal form in eccentricities and inclinations, are given. The authors present the transformation formulae in the two-body problem which give the correspondence between the constants of integration introduced in the theory and the classical keplerian elements. The practical elaboration of the algorithm and some partial results for the couple of planets Jupiter and Saturn are described.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N5a833691fb3644339c3d4148ea3dd969
11 Nde72687c28234c8ba954466dee939632
12 sg:journal.1136436
13 schema:name Construction of a general planetary theory of the first order
14 schema:pagination 335-355
15 schema:productId N258f70f2898948bb8a2fa1c715791f6e
16 Nd766b3a13b7f42aaae0e70e14ebc208e
17 Nf2fa551eae5743f8927accbc708be7b8
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011684295
19 https://doi.org/10.1007/bf01227805
20 schema:sdDatePublished 2019-04-10T23:20
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N0f821ae0811145ce8a53051864a1b3a5
23 schema:url http://link.springer.com/10.1007/BF01227805
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N0f821ae0811145ce8a53051864a1b3a5 schema:name Springer Nature - SN SciGraph project
28 rdf:type schema:Organization
29 N258f70f2898948bb8a2fa1c715791f6e schema:name readcube_id
30 schema:value 37ab618b9b3d0b275d5fe9cf44fe692414a48dd179ea0b8551816388a79e03bf
31 rdf:type schema:PropertyValue
32 N2ec763608328444585b65c64ddfcd82a rdf:first sg:person.013527777775.06
33 rdf:rest Nb4d3423613d646a68ff5d02035d41610
34 N5a833691fb3644339c3d4148ea3dd969 schema:issueNumber 3
35 rdf:type schema:PublicationIssue
36 Nb4d3423613d646a68ff5d02035d41610 rdf:first sg:person.013134336621.31
37 rdf:rest rdf:nil
38 Nd766b3a13b7f42aaae0e70e14ebc208e schema:name dimensions_id
39 schema:value pub.1011684295
40 rdf:type schema:PropertyValue
41 Nde72687c28234c8ba954466dee939632 schema:volumeNumber 8
42 rdf:type schema:PublicationVolume
43 Ne08c683c70304a1bbe660aa6878103ae schema:name Bureau des Longitudes, Paris
44 rdf:type schema:Organization
45 Nf2fa551eae5743f8927accbc708be7b8 schema:name doi
46 schema:value 10.1007/bf01227805
47 rdf:type schema:PropertyValue
48 Nf344a04e0bb84cb5bed915017702da53 schema:name Institute of Theoretical Astronomy, Leningrad
49 rdf:type schema:Organization
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
54 schema:name Numerical and Computational Mathematics
55 rdf:type schema:DefinedTerm
56 sg:journal.1136436 schema:issn 0008-8714
57 0923-2958
58 schema:name Celestial Mechanics and Dynamical Astronomy
59 rdf:type schema:Periodical
60 sg:person.013134336621.31 schema:affiliation Ne08c683c70304a1bbe660aa6878103ae
61 schema:familyName Chapront
62 schema:givenName J.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013134336621.31
64 rdf:type schema:Person
65 sg:person.013527777775.06 schema:affiliation Nf344a04e0bb84cb5bed915017702da53
66 schema:familyName Brumberg
67 schema:givenName V. A.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013527777775.06
69 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...