The decorated Teichmüller space of punctured surfaces View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-06

AUTHORS

R. C. Penner

ABSTRACT

A principal ℝ+5-bundle over the usual Teichmüller space of ans times punctured surface is introduced. The bundle is mapping class group equivariant and admits an invariant foliation. Several coordinatizations of the total space of the bundle are developed. There is furthermore a natural cell-decomposition of the bundle. Finally, we compute the coordinate action of the mapping class group on the total space; the total space is found to have a rich (equivariant) geometric structure. We sketch some connections with arithmetic groups, diophantine approximations, and certain problems in plane euclidean geometry. Furthermore, these investigations lead to an explicit scheme of integration over the moduli spaces, and to the construction of a “universal Teichmüller space,” which we hope will provide a formalism for understanding some connections between the Teichmüller theory, the KP hierarchy and the Virasoro algebra. These latter applications are pursued elsewhere. More... »

PAGES

299-339

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01223515

DOI

http://dx.doi.org/10.1007/bf01223515

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047039592


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Southern California", 
          "id": "https://www.grid.ac/institutes/grid.42505.36", 
          "name": [
            "Math Department, University of Southern California, 90089, Los Angeles, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Penner", 
        "givenName": "R. C.", 
        "id": "sg:person.0770353007.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770353007.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01390325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011455669", 
          "https://doi.org/10.1007/bf01390325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01388737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019342889", 
          "https://doi.org/10.1007/bf01388737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(87)90418-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022457949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(87)90418-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022457949"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1987-06", 
    "datePublishedReg": "1987-06-01", 
    "description": "A principal \u211d+5-bundle over the usual Teichm\u00fcller space of ans times punctured surface is introduced. The bundle is mapping class group equivariant and admits an invariant foliation. Several coordinatizations of the total space of the bundle are developed. There is furthermore a natural cell-decomposition of the bundle. Finally, we compute the coordinate action of the mapping class group on the total space; the total space is found to have a rich (equivariant) geometric structure. We sketch some connections with arithmetic groups, diophantine approximations, and certain problems in plane euclidean geometry. Furthermore, these investigations lead to an explicit scheme of integration over the moduli spaces, and to the construction of a \u201cuniversal Teichm\u00fcller space,\u201d which we hope will provide a formalism for understanding some connections between the Teichm\u00fcller theory, the KP hierarchy and the Virasoro algebra. These latter applications are pursued elsewhere.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01223515", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "113"
      }
    ], 
    "name": "The decorated Teichm\u00fcller space of punctured surfaces", 
    "pagination": "299-339", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e014e8bd3f4ce94e48f6b248461cb1a13d366b95d88b5758e6b2e0c10e0116f9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01223515"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047039592"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01223515", 
      "https://app.dimensions.ai/details/publication/pub.1047039592"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46766_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01223515"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01223515'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01223515'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01223515'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01223515'


 

This table displays all metadata directly associated to this object as RDF triples.

72 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01223515 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N5c58da4ed4364027b18407be29febc31
4 schema:citation sg:pub.10.1007/bf01388737
5 sg:pub.10.1007/bf01390325
6 https://doi.org/10.1016/0550-3213(87)90418-4
7 schema:datePublished 1987-06
8 schema:datePublishedReg 1987-06-01
9 schema:description A principal ℝ+5-bundle over the usual Teichmüller space of ans times punctured surface is introduced. The bundle is mapping class group equivariant and admits an invariant foliation. Several coordinatizations of the total space of the bundle are developed. There is furthermore a natural cell-decomposition of the bundle. Finally, we compute the coordinate action of the mapping class group on the total space; the total space is found to have a rich (equivariant) geometric structure. We sketch some connections with arithmetic groups, diophantine approximations, and certain problems in plane euclidean geometry. Furthermore, these investigations lead to an explicit scheme of integration over the moduli spaces, and to the construction of a “universal Teichmüller space,” which we hope will provide a formalism for understanding some connections between the Teichmüller theory, the KP hierarchy and the Virasoro algebra. These latter applications are pursued elsewhere.
10 schema:genre research_article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N1d35b9c5846d458eb1746ce5e36c22eb
14 Nc18687d695774f10a66c94dc9586ae8d
15 sg:journal.1136216
16 schema:name The decorated Teichmüller space of punctured surfaces
17 schema:pagination 299-339
18 schema:productId N7eff66f22c774b13b09374f9801aefcb
19 N849b21304dde4d36be03991420de4f59
20 Nf7fe05f556d24a65b97225813c793540
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047039592
22 https://doi.org/10.1007/bf01223515
23 schema:sdDatePublished 2019-04-11T13:33
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher Na7a48691003d4b14987d88b0aa8e9255
26 schema:url http://link.springer.com/10.1007/BF01223515
27 sgo:license sg:explorer/license/
28 sgo:sdDataset articles
29 rdf:type schema:ScholarlyArticle
30 N1d35b9c5846d458eb1746ce5e36c22eb schema:volumeNumber 113
31 rdf:type schema:PublicationVolume
32 N5c58da4ed4364027b18407be29febc31 rdf:first sg:person.0770353007.39
33 rdf:rest rdf:nil
34 N7eff66f22c774b13b09374f9801aefcb schema:name readcube_id
35 schema:value e014e8bd3f4ce94e48f6b248461cb1a13d366b95d88b5758e6b2e0c10e0116f9
36 rdf:type schema:PropertyValue
37 N849b21304dde4d36be03991420de4f59 schema:name doi
38 schema:value 10.1007/bf01223515
39 rdf:type schema:PropertyValue
40 Na7a48691003d4b14987d88b0aa8e9255 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 Nc18687d695774f10a66c94dc9586ae8d schema:issueNumber 2
43 rdf:type schema:PublicationIssue
44 Nf7fe05f556d24a65b97225813c793540 schema:name dimensions_id
45 schema:value pub.1047039592
46 rdf:type schema:PropertyValue
47 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
48 schema:name Mathematical Sciences
49 rdf:type schema:DefinedTerm
50 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
51 schema:name Pure Mathematics
52 rdf:type schema:DefinedTerm
53 sg:journal.1136216 schema:issn 0010-3616
54 1432-0916
55 schema:name Communications in Mathematical Physics
56 rdf:type schema:Periodical
57 sg:person.0770353007.39 schema:affiliation https://www.grid.ac/institutes/grid.42505.36
58 schema:familyName Penner
59 schema:givenName R. C.
60 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770353007.39
61 rdf:type schema:Person
62 sg:pub.10.1007/bf01388737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019342889
63 https://doi.org/10.1007/bf01388737
64 rdf:type schema:CreativeWork
65 sg:pub.10.1007/bf01390325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011455669
66 https://doi.org/10.1007/bf01390325
67 rdf:type schema:CreativeWork
68 https://doi.org/10.1016/0550-3213(87)90418-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022457949
69 rdf:type schema:CreativeWork
70 https://www.grid.ac/institutes/grid.42505.36 schema:alternateName University of Southern California
71 schema:name Math Department, University of Southern California, 90089, Los Angeles, CA, USA
72 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...