Shift automorphisms in the Hénon mapping View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1979-06

AUTHORS

R. Devaney, Z. Nitecki

ABSTRACT

We investigate the global behavior of the quadratic diffeomorphism of the plane given byH(x,y)=(1+y−Ax2,Bx). Numerical work by Hénon, Curry, and Feit indicate that, for certain values of the parameters, this mapping admits a “strange attractor”. Here we show that, forA small enough, all points in the plane eventually move to infinity under iteration ofH. On the other hand, whenA is large enough, the nonwandering set ofH is topologically conjugate to the shift automorphism on two symbols. More... »

PAGES

137-146

References to SciGraph publications

  • 1976. Two strange attractors with a simple structure in TURBULENCE AND NAVIER STOKES EQUATIONS
  • 1978. Dynamical systems with turbulent behavior in MATHEMATICAL PROBLEMS IN THEORETICAL PHYSICS
  • 1978-08. Characteristic exponents and strange attractors in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1912-03. Beweis des ebenen Translationssatzes in MATHEMATISCHE ANNALEN
  • 1976-02. A two-dimensional mapping with a strange attractor in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01221362

    DOI

    http://dx.doi.org/10.1007/bf01221362

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1000754556


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology and Cognitive Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Tufts University", 
              "id": "https://www.grid.ac/institutes/grid.429997.8", 
              "name": [
                "Department of Mathematics, Tufts University, 02155, Medford, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Devaney", 
            "givenName": "R.", 
            "id": "sg:person.014247523404.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014247523404.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tufts University", 
              "id": "https://www.grid.ac/institutes/grid.429997.8", 
              "name": [
                "Department of Mathematics, Tufts University, 02155, Medford, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nitecki", 
            "givenName": "Z.", 
            "id": "sg:person.0603116124.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603116124.46"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/3-540-08853-9_28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006652694", 
              "https://doi.org/10.1007/3-540-08853-9_28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01456888", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026006634", 
              "https://doi.org/10.1007/bf01456888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9904-1965-11304-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037658463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01608556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038318754", 
              "https://doi.org/10.1007/bf01608556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01608556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038318754", 
              "https://doi.org/10.1007/bf01608556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01940767", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042041392", 
              "https://doi.org/10.1007/bf01940767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01940767", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042041392", 
              "https://doi.org/10.1007/bf01940767"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0091446", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043100210", 
              "https://doi.org/10.1007/bfb0091446"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/qam/253513", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059348313"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/9789812792822_0018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1088722427"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1979-06", 
        "datePublishedReg": "1979-06-01", 
        "description": "We investigate the global behavior of the quadratic diffeomorphism of the plane given byH(x,y)=(1+y\u2212Ax2,Bx). Numerical work by H\u00e9non, Curry, and Feit indicate that, for certain values of the parameters, this mapping admits a \u201cstrange attractor\u201d. Here we show that, forA small enough, all points in the plane eventually move to infinity under iteration ofH. On the other hand, whenA is large enough, the nonwandering set ofH is topologically conjugate to the shift automorphism on two symbols.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01221362", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "67"
          }
        ], 
        "name": "Shift automorphisms in the H\u00e9non mapping", 
        "pagination": "137-146", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0397f9921c719dd9086f1f09075a92177c7cbf75ce06c257b6bea4fa66f5bea6"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01221362"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1000754556"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01221362", 
          "https://app.dimensions.ai/details/publication/pub.1000754556"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46744_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01221362"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01221362'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01221362'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01221362'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01221362'


     

    This table displays all metadata directly associated to this object as RDF triples.

    97 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01221362 schema:about anzsrc-for:17
    2 anzsrc-for:1701
    3 schema:author N5f6f47cb214043f1acd0b50a2bec30f0
    4 schema:citation sg:pub.10.1007/3-540-08853-9_28
    5 sg:pub.10.1007/bf01456888
    6 sg:pub.10.1007/bf01608556
    7 sg:pub.10.1007/bf01940767
    8 sg:pub.10.1007/bfb0091446
    9 https://doi.org/10.1090/qam/253513
    10 https://doi.org/10.1090/s0002-9904-1965-11304-0
    11 https://doi.org/10.1142/9789812792822_0018
    12 schema:datePublished 1979-06
    13 schema:datePublishedReg 1979-06-01
    14 schema:description We investigate the global behavior of the quadratic diffeomorphism of the plane given byH(x,y)=(1+y−Ax2,Bx). Numerical work by Hénon, Curry, and Feit indicate that, for certain values of the parameters, this mapping admits a “strange attractor”. Here we show that, forA small enough, all points in the plane eventually move to infinity under iteration ofH. On the other hand, whenA is large enough, the nonwandering set ofH is topologically conjugate to the shift automorphism on two symbols.
    15 schema:genre research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf Nb03dacadf748448a9fbe3e2bfc9ea4cb
    19 Nc18dcfb651194c2c96b90b78618b0e1e
    20 sg:journal.1136216
    21 schema:name Shift automorphisms in the Hénon mapping
    22 schema:pagination 137-146
    23 schema:productId N2c1ec6f61d8946f09231702b9d034f7b
    24 N66adf23101ed4446b1d696731aaaca5c
    25 Nb5fedc8db7124d309c6ec0e123c3f41c
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000754556
    27 https://doi.org/10.1007/bf01221362
    28 schema:sdDatePublished 2019-04-11T13:28
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher N53295268024f45c889857a3c5715787a
    31 schema:url http://link.springer.com/10.1007/BF01221362
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N2c1ec6f61d8946f09231702b9d034f7b schema:name dimensions_id
    36 schema:value pub.1000754556
    37 rdf:type schema:PropertyValue
    38 N53295268024f45c889857a3c5715787a schema:name Springer Nature - SN SciGraph project
    39 rdf:type schema:Organization
    40 N5f6f47cb214043f1acd0b50a2bec30f0 rdf:first sg:person.014247523404.55
    41 rdf:rest N847785974c6941fa8b8699d25815d238
    42 N66adf23101ed4446b1d696731aaaca5c schema:name doi
    43 schema:value 10.1007/bf01221362
    44 rdf:type schema:PropertyValue
    45 N847785974c6941fa8b8699d25815d238 rdf:first sg:person.0603116124.46
    46 rdf:rest rdf:nil
    47 Nb03dacadf748448a9fbe3e2bfc9ea4cb schema:issueNumber 2
    48 rdf:type schema:PublicationIssue
    49 Nb5fedc8db7124d309c6ec0e123c3f41c schema:name readcube_id
    50 schema:value 0397f9921c719dd9086f1f09075a92177c7cbf75ce06c257b6bea4fa66f5bea6
    51 rdf:type schema:PropertyValue
    52 Nc18dcfb651194c2c96b90b78618b0e1e schema:volumeNumber 67
    53 rdf:type schema:PublicationVolume
    54 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
    55 schema:name Psychology and Cognitive Sciences
    56 rdf:type schema:DefinedTerm
    57 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Psychology
    59 rdf:type schema:DefinedTerm
    60 sg:journal.1136216 schema:issn 0010-3616
    61 1432-0916
    62 schema:name Communications in Mathematical Physics
    63 rdf:type schema:Periodical
    64 sg:person.014247523404.55 schema:affiliation https://www.grid.ac/institutes/grid.429997.8
    65 schema:familyName Devaney
    66 schema:givenName R.
    67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014247523404.55
    68 rdf:type schema:Person
    69 sg:person.0603116124.46 schema:affiliation https://www.grid.ac/institutes/grid.429997.8
    70 schema:familyName Nitecki
    71 schema:givenName Z.
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603116124.46
    73 rdf:type schema:Person
    74 sg:pub.10.1007/3-540-08853-9_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006652694
    75 https://doi.org/10.1007/3-540-08853-9_28
    76 rdf:type schema:CreativeWork
    77 sg:pub.10.1007/bf01456888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026006634
    78 https://doi.org/10.1007/bf01456888
    79 rdf:type schema:CreativeWork
    80 sg:pub.10.1007/bf01608556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038318754
    81 https://doi.org/10.1007/bf01608556
    82 rdf:type schema:CreativeWork
    83 sg:pub.10.1007/bf01940767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042041392
    84 https://doi.org/10.1007/bf01940767
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.1007/bfb0091446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043100210
    87 https://doi.org/10.1007/bfb0091446
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1090/qam/253513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059348313
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1090/s0002-9904-1965-11304-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037658463
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1142/9789812792822_0018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088722427
    94 rdf:type schema:CreativeWork
    95 https://www.grid.ac/institutes/grid.429997.8 schema:alternateName Tufts University
    96 schema:name Department of Mathematics, Tufts University, 02155, Medford, Massachusetts, USA
    97 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...