Polynomial deformations and cohomology of Calabi-Yau manifolds View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-09

AUTHORS

Paul Green, Tristan Hübsch

ABSTRACT

We study the method of polynomial deformations that is used in the physics literature to determine the Hodge numbers of Calabi-Yau manifolds as well as the related Yukawa couplings. We show that the argument generally presented in the literature in support of these computations is seriously misleading, give a correct proof which applies to all the cases we found in the literature, and present examples which show that the method is not universally valid. We present a general analysis which applies to all Calabi-Yau manifolds embedded as complete intersections in products of complex projective spaces, yields sufficient conditions for the validity of the polynomial deformation method, and provides an alternative computation of all the Hodge numbers in many cases in which the polynomial method fails. More... »

PAGES

505-528

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01221257

DOI

http://dx.doi.org/10.1007/bf01221257

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031800034


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Maryland, College Park", 
          "id": "https://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Department of Mathematics, University of Maryland, 20742, College Park, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Green", 
        "givenName": "Paul", 
        "id": "sg:person.015441147377.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015441147377.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maryland, College Park", 
          "id": "https://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Department of Physics and Astronomy, University of Maryland, 20742, College Park, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00fcbsch", 
        "givenName": "Tristan", 
        "id": "sg:person.011056660526.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011056660526.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01216094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001957668", 
          "https://doi.org/10.1007/bf01216094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01216094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001957668", 
          "https://doi.org/10.1007/bf01216094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(85)90603-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006635929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(85)90603-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006635929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01205673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020914010", 
          "https://doi.org/10.1007/bf01205673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01205673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020914010", 
          "https://doi.org/10.1007/bf01205673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(86)80002-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029001163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-8590-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030293365", 
          "https://doi.org/10.1007/978-1-4613-8590-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-8590-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030293365", 
          "https://doi.org/10.1007/978-1-4613-8590-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(86)90202-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037958162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(86)90202-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037958162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01210616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040857531", 
          "https://doi.org/10.1007/bf01210616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(85)90602-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041622769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(85)90602-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041622769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1969996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069675344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2373152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069899734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2373153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069899735"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1987-09", 
    "datePublishedReg": "1987-09-01", 
    "description": "We study the method of polynomial deformations that is used in the physics literature to determine the Hodge numbers of Calabi-Yau manifolds as well as the related Yukawa couplings. We show that the argument generally presented in the literature in support of these computations is seriously misleading, give a correct proof which applies to all the cases we found in the literature, and present examples which show that the method is not universally valid. We present a general analysis which applies to all Calabi-Yau manifolds embedded as complete intersections in products of complex projective spaces, yields sufficient conditions for the validity of the polynomial deformation method, and provides an alternative computation of all the Hodge numbers in many cases in which the polynomial method fails.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01221257", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "113"
      }
    ], 
    "name": "Polynomial deformations and cohomology of Calabi-Yau manifolds", 
    "pagination": "505-528", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "977cd240a69b79a38108327ed5dd3eac406e781b2c34085e33375a254dcbb2af"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01221257"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031800034"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01221257", 
      "https://app.dimensions.ai/details/publication/pub.1031800034"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46747_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01221257"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01221257'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01221257'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01221257'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01221257'


 

This table displays all metadata directly associated to this object as RDF triples.

106 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01221257 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nfb8e8c839cb049d9a3303b3776207a16
4 schema:citation sg:pub.10.1007/978-1-4613-8590-5
5 sg:pub.10.1007/bf01205673
6 sg:pub.10.1007/bf01210616
7 sg:pub.10.1007/bf01216094
8 https://doi.org/10.1016/0550-3213(85)90602-9
9 https://doi.org/10.1016/0550-3213(85)90603-0
10 https://doi.org/10.1016/0550-3213(86)90202-6
11 https://doi.org/10.1016/s0550-3213(86)80002-5
12 https://doi.org/10.2307/1969996
13 https://doi.org/10.2307/2373152
14 https://doi.org/10.2307/2373153
15 schema:datePublished 1987-09
16 schema:datePublishedReg 1987-09-01
17 schema:description We study the method of polynomial deformations that is used in the physics literature to determine the Hodge numbers of Calabi-Yau manifolds as well as the related Yukawa couplings. We show that the argument generally presented in the literature in support of these computations is seriously misleading, give a correct proof which applies to all the cases we found in the literature, and present examples which show that the method is not universally valid. We present a general analysis which applies to all Calabi-Yau manifolds embedded as complete intersections in products of complex projective spaces, yields sufficient conditions for the validity of the polynomial deformation method, and provides an alternative computation of all the Hodge numbers in many cases in which the polynomial method fails.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf Nb3ad878da98e4e49ac3fe7000eb75d7e
22 Ncbf655a939f94057b3336bd4ee05643d
23 sg:journal.1136216
24 schema:name Polynomial deformations and cohomology of Calabi-Yau manifolds
25 schema:pagination 505-528
26 schema:productId N5c852241d0894019b893a6b2a9c28962
27 Nb2af4f67cb4b448092909ab62fb77583
28 Ne71b82dc6d684c0a87ac72c80b690d4d
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031800034
30 https://doi.org/10.1007/bf01221257
31 schema:sdDatePublished 2019-04-11T13:29
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N7a0d8222b73e4e59b966ebf2db39e4ec
34 schema:url http://link.springer.com/10.1007/BF01221257
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N5c852241d0894019b893a6b2a9c28962 schema:name doi
39 schema:value 10.1007/bf01221257
40 rdf:type schema:PropertyValue
41 N7a0d8222b73e4e59b966ebf2db39e4ec schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 Nb2af4f67cb4b448092909ab62fb77583 schema:name readcube_id
44 schema:value 977cd240a69b79a38108327ed5dd3eac406e781b2c34085e33375a254dcbb2af
45 rdf:type schema:PropertyValue
46 Nb3ad878da98e4e49ac3fe7000eb75d7e schema:issueNumber 3
47 rdf:type schema:PublicationIssue
48 Ncbf655a939f94057b3336bd4ee05643d schema:volumeNumber 113
49 rdf:type schema:PublicationVolume
50 Nda5f74982ff840299c34ba7de019cc2c rdf:first sg:person.011056660526.62
51 rdf:rest rdf:nil
52 Ne71b82dc6d684c0a87ac72c80b690d4d schema:name dimensions_id
53 schema:value pub.1031800034
54 rdf:type schema:PropertyValue
55 Nfb8e8c839cb049d9a3303b3776207a16 rdf:first sg:person.015441147377.45
56 rdf:rest Nda5f74982ff840299c34ba7de019cc2c
57 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
58 schema:name Mathematical Sciences
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
61 schema:name Pure Mathematics
62 rdf:type schema:DefinedTerm
63 sg:journal.1136216 schema:issn 0010-3616
64 1432-0916
65 schema:name Communications in Mathematical Physics
66 rdf:type schema:Periodical
67 sg:person.011056660526.62 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
68 schema:familyName Hübsch
69 schema:givenName Tristan
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011056660526.62
71 rdf:type schema:Person
72 sg:person.015441147377.45 schema:affiliation https://www.grid.ac/institutes/grid.164295.d
73 schema:familyName Green
74 schema:givenName Paul
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015441147377.45
76 rdf:type schema:Person
77 sg:pub.10.1007/978-1-4613-8590-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030293365
78 https://doi.org/10.1007/978-1-4613-8590-5
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/bf01205673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020914010
81 https://doi.org/10.1007/bf01205673
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bf01210616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040857531
84 https://doi.org/10.1007/bf01210616
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf01216094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001957668
87 https://doi.org/10.1007/bf01216094
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/0550-3213(85)90602-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041622769
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/0550-3213(85)90603-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006635929
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/0550-3213(86)90202-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037958162
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/s0550-3213(86)80002-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029001163
96 rdf:type schema:CreativeWork
97 https://doi.org/10.2307/1969996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069675344
98 rdf:type schema:CreativeWork
99 https://doi.org/10.2307/2373152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069899734
100 rdf:type schema:CreativeWork
101 https://doi.org/10.2307/2373153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069899735
102 rdf:type schema:CreativeWork
103 https://www.grid.ac/institutes/grid.164295.d schema:alternateName University of Maryland, College Park
104 schema:name Department of Mathematics, University of Maryland, 20742, College Park, MD, USA
105 Department of Physics and Astronomy, University of Maryland, 20742, College Park, MD, USA
106 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...