A new proof of localization in the Anderson tight binding model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1989-06

AUTHORS

Henrique von Dreifus, Abel Klein

ABSTRACT

We give a new proof of exponential localization in the Anderson tight binding model which uses many ideas of the Frohlich, Martinelli, Scoppola and Spencer proof, but is technically simpler-particularly the probabilistic estimates.

PAGES

285-299

Journal

TITLE

Communications in Mathematical Physics

ISSUE

2

VOLUME

124

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01219198

DOI

http://dx.doi.org/10.1007/bf01219198

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052138451


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Department of Mathematics, University of California, Irvine, 92717, Irvine, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "von Dreifus", 
        "givenName": "Henrique", 
        "id": "sg:person.012010076771.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012010076771.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Santa Barbara", 
          "id": "https://www.grid.ac/institutes/grid.133342.4", 
          "name": [
            "Department of Mathematics, University of California, Irvine, 92717, Irvine, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klein", 
        "givenName": "Abel", 
        "id": "sg:person.01301631024.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301631024.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01942371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000362893", 
          "https://doi.org/10.1007/bf01942371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01942371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000362893", 
          "https://doi.org/10.1007/bf01942371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02740933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001574586", 
          "https://doi.org/10.1007/bf02740933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01210702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002642648", 
          "https://doi.org/10.1007/bf01210702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01210702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002642648", 
          "https://doi.org/10.1007/bf01210702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01292646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003562590", 
          "https://doi.org/10.1007/bf01292646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01292646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003562590", 
          "https://doi.org/10.1007/bf01292646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160390105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007461009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160390105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007461009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01209475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011949639", 
          "https://doi.org/10.1007/bf01209475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01014897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024733460", 
          "https://doi.org/10.1007/bf01014897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01212355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029360644", 
          "https://doi.org/10.1007/bf01212355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01135526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035619170", 
          "https://doi.org/10.1007/bf01135526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01135526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035619170", 
          "https://doi.org/10.1007/bf01135526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01009014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038421197", 
          "https://doi.org/10.1007/bf01009014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(90)90031-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040980321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0273-0979-1982-15041-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047628941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01213410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051166685", 
          "https://doi.org/10.1007/bf01213410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01213410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051166685", 
          "https://doi.org/10.1007/bf01213410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm1973v028n01abeh001396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058194057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.109.1492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060419891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.109.1492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060419891"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1989-06", 
    "datePublishedReg": "1989-06-01", 
    "description": "We give a new proof of exponential localization in the Anderson tight binding model which uses many ideas of the Frohlich, Martinelli, Scoppola and Spencer proof, but is technically simpler-particularly the probabilistic estimates.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01219198", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "124"
      }
    ], 
    "name": "A new proof of localization in the Anderson tight binding model", 
    "pagination": "285-299", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f85a541edac3b6c71c6eaa989b1290adc1e5f73ba66a102cbce1a3c4a7e98916"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01219198"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052138451"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01219198", 
      "https://app.dimensions.ai/details/publication/pub.1052138451"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000496.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01219198"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01219198'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01219198'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01219198'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01219198'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      20 PREDICATES      40 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01219198 schema:author N05e267ee8f8343d485d3c524ff658819
2 schema:citation sg:pub.10.1007/bf01009014
3 sg:pub.10.1007/bf01014897
4 sg:pub.10.1007/bf01135526
5 sg:pub.10.1007/bf01209475
6 sg:pub.10.1007/bf01210702
7 sg:pub.10.1007/bf01212355
8 sg:pub.10.1007/bf01213410
9 sg:pub.10.1007/bf01292646
10 sg:pub.10.1007/bf01942371
11 sg:pub.10.1007/bf02740933
12 https://doi.org/10.1002/cpa.3160390105
13 https://doi.org/10.1016/0022-1236(90)90031-f
14 https://doi.org/10.1070/rm1973v028n01abeh001396
15 https://doi.org/10.1090/s0273-0979-1982-15041-8
16 https://doi.org/10.1103/physrev.109.1492
17 schema:datePublished 1989-06
18 schema:datePublishedReg 1989-06-01
19 schema:description We give a new proof of exponential localization in the Anderson tight binding model which uses many ideas of the Frohlich, Martinelli, Scoppola and Spencer proof, but is technically simpler-particularly the probabilistic estimates.
20 schema:genre research_article
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N7b664cae9c2d42848e46212aa6430239
24 N7e3b9bc5c8314a1ea5cd6007e87cfe67
25 sg:journal.1136216
26 schema:name A new proof of localization in the Anderson tight binding model
27 schema:pagination 285-299
28 schema:productId N0c1bbcc8d09d48b3a95bbd27d9c36e1e
29 N7976ec15cf9c49bb9f912e1c11b81a66
30 Nc6ee9383db21462fb9f218a2a43d991c
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052138451
32 https://doi.org/10.1007/bf01219198
33 schema:sdDatePublished 2019-04-10T21:33
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Nffd3a37b80a940938b4b43bc8c240cb2
36 schema:url http://link.springer.com/10.1007/BF01219198
37 sgo:license sg:explorer/license/
38 sgo:sdDataset articles
39 rdf:type schema:ScholarlyArticle
40 N05e267ee8f8343d485d3c524ff658819 rdf:first sg:person.012010076771.33
41 rdf:rest N25d5093fc313459c9ead785e2c96b40b
42 N0c1bbcc8d09d48b3a95bbd27d9c36e1e schema:name doi
43 schema:value 10.1007/bf01219198
44 rdf:type schema:PropertyValue
45 N25d5093fc313459c9ead785e2c96b40b rdf:first sg:person.01301631024.41
46 rdf:rest rdf:nil
47 N7976ec15cf9c49bb9f912e1c11b81a66 schema:name readcube_id
48 schema:value f85a541edac3b6c71c6eaa989b1290adc1e5f73ba66a102cbce1a3c4a7e98916
49 rdf:type schema:PropertyValue
50 N7b664cae9c2d42848e46212aa6430239 schema:volumeNumber 124
51 rdf:type schema:PublicationVolume
52 N7e3b9bc5c8314a1ea5cd6007e87cfe67 schema:issueNumber 2
53 rdf:type schema:PublicationIssue
54 Nc6ee9383db21462fb9f218a2a43d991c schema:name dimensions_id
55 schema:value pub.1052138451
56 rdf:type schema:PropertyValue
57 Nffd3a37b80a940938b4b43bc8c240cb2 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 sg:journal.1136216 schema:issn 0010-3616
60 1432-0916
61 schema:name Communications in Mathematical Physics
62 rdf:type schema:Periodical
63 sg:person.012010076771.33 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
64 schema:familyName von Dreifus
65 schema:givenName Henrique
66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012010076771.33
67 rdf:type schema:Person
68 sg:person.01301631024.41 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
69 schema:familyName Klein
70 schema:givenName Abel
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301631024.41
72 rdf:type schema:Person
73 sg:pub.10.1007/bf01009014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038421197
74 https://doi.org/10.1007/bf01009014
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/bf01014897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024733460
77 https://doi.org/10.1007/bf01014897
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/bf01135526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035619170
80 https://doi.org/10.1007/bf01135526
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/bf01209475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011949639
83 https://doi.org/10.1007/bf01209475
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/bf01210702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002642648
86 https://doi.org/10.1007/bf01210702
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bf01212355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029360644
89 https://doi.org/10.1007/bf01212355
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf01213410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051166685
92 https://doi.org/10.1007/bf01213410
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/bf01292646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003562590
95 https://doi.org/10.1007/bf01292646
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf01942371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000362893
98 https://doi.org/10.1007/bf01942371
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf02740933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001574586
101 https://doi.org/10.1007/bf02740933
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1002/cpa.3160390105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007461009
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/0022-1236(90)90031-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1040980321
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1070/rm1973v028n01abeh001396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058194057
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1090/s0273-0979-1982-15041-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047628941
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physrev.109.1492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060419891
112 rdf:type schema:CreativeWork
113 https://www.grid.ac/institutes/grid.133342.4 schema:alternateName University of California, Santa Barbara
114 schema:name Department of Mathematics, University of California, Irvine, 92717, Irvine, CA, USA
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...