Nonlinear diffusion limit for a system with nearest neighbor interactions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-03

AUTHORS

M. Z. Guo, G. C. Papanicolaou, S. R. S. Varadhan

ABSTRACT

We consider a system of interacting diffusions. The variables are to be thought of as charges at sites indexed by a periodic one-dimensional lattice. The diffusion preserves the total charge and the interaction is of nearest neighbor type. With the appropriate scaling of lattice spacing and time, a nonlinear diffusion equation is derived for the time evolution of the macroscopic charge density. More... »

PAGES

31-59

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01218476

DOI

http://dx.doi.org/10.1007/bf01218476

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016614190


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Department of Mathematics, Beijing University, Beijing, People's Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "M. Z.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Courant Institute of Mathematical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.482020.c", 
          "name": [
            "Courant Institute, New York University, 251 Mercer Street, 10012, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Papanicolaou", 
        "givenName": "G. C.", 
        "id": "sg:person.0616474541.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616474541.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Courant Institute of Mathematical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.482020.c", 
          "name": [
            "Courant Institute, New York University, 251 Mercer Street, 10012, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Varadhan", 
        "givenName": "S. R. S.", 
        "id": "sg:person.012652746377.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012652746377.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01464280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001060784", 
          "https://doi.org/10.1007/bf01464280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01464280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001060784", 
          "https://doi.org/10.1007/bf01464280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160190303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007522690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160190303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007522690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01210789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048441557", 
          "https://doi.org/10.1007/bf01210789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01210789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048441557", 
          "https://doi.org/10.1007/bf01210789"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988-03", 
    "datePublishedReg": "1988-03-01", 
    "description": "We consider a system of interacting diffusions. The variables are to be thought of as charges at sites indexed by a periodic one-dimensional lattice. The diffusion preserves the total charge and the interaction is of nearest neighbor type. With the appropriate scaling of lattice spacing and time, a nonlinear diffusion equation is derived for the time evolution of the macroscopic charge density.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01218476", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "118"
      }
    ], 
    "name": "Nonlinear diffusion limit for a system with nearest neighbor interactions", 
    "pagination": "31-59", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4f29696653dd89b8ecacab852024a910093cf2e1c9f799006f6ad8708f870439"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01218476"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016614190"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01218476", 
      "https://app.dimensions.ai/details/publication/pub.1016614190"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46751_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01218476"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01218476'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01218476'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01218476'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01218476'


 

This table displays all metadata directly associated to this object as RDF triples.

88 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01218476 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N9544383582394a3fa1181c74d1fd64f6
4 schema:citation sg:pub.10.1007/bf01210789
5 sg:pub.10.1007/bf01464280
6 https://doi.org/10.1002/cpa.3160190303
7 schema:datePublished 1988-03
8 schema:datePublishedReg 1988-03-01
9 schema:description We consider a system of interacting diffusions. The variables are to be thought of as charges at sites indexed by a periodic one-dimensional lattice. The diffusion preserves the total charge and the interaction is of nearest neighbor type. With the appropriate scaling of lattice spacing and time, a nonlinear diffusion equation is derived for the time evolution of the macroscopic charge density.
10 schema:genre research_article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N44939b8398084335a4e0a85a4f700564
14 Nf30be4f85e3348e38bc347893746b0aa
15 sg:journal.1136216
16 schema:name Nonlinear diffusion limit for a system with nearest neighbor interactions
17 schema:pagination 31-59
18 schema:productId N4f6dc2906898453c9c4223684d9b00ca
19 N73f7c4e05e244d7eac86d66aba41e7a6
20 Nb91d794cc36747c8b1a7771c0f1473f4
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016614190
22 https://doi.org/10.1007/bf01218476
23 schema:sdDatePublished 2019-04-11T13:30
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher N166ab05f22a9445d89198efe2f653903
26 schema:url http://link.springer.com/10.1007/BF01218476
27 sgo:license sg:explorer/license/
28 sgo:sdDataset articles
29 rdf:type schema:ScholarlyArticle
30 N166ab05f22a9445d89198efe2f653903 schema:name Springer Nature - SN SciGraph project
31 rdf:type schema:Organization
32 N426dbfdbd77f44078165ed04c74ffb57 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
33 schema:familyName Guo
34 schema:givenName M. Z.
35 rdf:type schema:Person
36 N44939b8398084335a4e0a85a4f700564 schema:volumeNumber 118
37 rdf:type schema:PublicationVolume
38 N4f6dc2906898453c9c4223684d9b00ca schema:name doi
39 schema:value 10.1007/bf01218476
40 rdf:type schema:PropertyValue
41 N659aec0751854548b670b01a2df4b912 rdf:first sg:person.012652746377.67
42 rdf:rest rdf:nil
43 N73f7c4e05e244d7eac86d66aba41e7a6 schema:name dimensions_id
44 schema:value pub.1016614190
45 rdf:type schema:PropertyValue
46 N9544383582394a3fa1181c74d1fd64f6 rdf:first N426dbfdbd77f44078165ed04c74ffb57
47 rdf:rest Nc88c5960d346476ba10391f809fec29a
48 Nb91d794cc36747c8b1a7771c0f1473f4 schema:name readcube_id
49 schema:value 4f29696653dd89b8ecacab852024a910093cf2e1c9f799006f6ad8708f870439
50 rdf:type schema:PropertyValue
51 Nc88c5960d346476ba10391f809fec29a rdf:first sg:person.0616474541.25
52 rdf:rest N659aec0751854548b670b01a2df4b912
53 Nf30be4f85e3348e38bc347893746b0aa schema:issueNumber 1
54 rdf:type schema:PublicationIssue
55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
56 schema:name Mathematical Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
59 schema:name Pure Mathematics
60 rdf:type schema:DefinedTerm
61 sg:journal.1136216 schema:issn 0010-3616
62 1432-0916
63 schema:name Communications in Mathematical Physics
64 rdf:type schema:Periodical
65 sg:person.012652746377.67 schema:affiliation https://www.grid.ac/institutes/grid.482020.c
66 schema:familyName Varadhan
67 schema:givenName S. R. S.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012652746377.67
69 rdf:type schema:Person
70 sg:person.0616474541.25 schema:affiliation https://www.grid.ac/institutes/grid.482020.c
71 schema:familyName Papanicolaou
72 schema:givenName G. C.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616474541.25
74 rdf:type schema:Person
75 sg:pub.10.1007/bf01210789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048441557
76 https://doi.org/10.1007/bf01210789
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bf01464280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001060784
79 https://doi.org/10.1007/bf01464280
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1002/cpa.3160190303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007522690
82 rdf:type schema:CreativeWork
83 https://www.grid.ac/institutes/grid.11135.37 schema:alternateName Peking University
84 schema:name Department of Mathematics, Beijing University, Beijing, People's Republic of China
85 rdf:type schema:Organization
86 https://www.grid.ac/institutes/grid.482020.c schema:alternateName Courant Institute of Mathematical Sciences
87 schema:name Courant Institute, New York University, 251 Mercer Street, 10012, New York, NY, USA
88 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...