Nonlinear diffusion limit for a system with nearest neighbor interactions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-03

AUTHORS

M. Z. Guo, G. C. Papanicolaou, S. R. S. Varadhan

ABSTRACT

We consider a system of interacting diffusions. The variables are to be thought of as charges at sites indexed by a periodic one-dimensional lattice. The diffusion preserves the total charge and the interaction is of nearest neighbor type. With the appropriate scaling of lattice spacing and time, a nonlinear diffusion equation is derived for the time evolution of the macroscopic charge density. More... »

PAGES

31-59

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01218476

DOI

http://dx.doi.org/10.1007/bf01218476

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016614190


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Peking University", 
          "id": "https://www.grid.ac/institutes/grid.11135.37", 
          "name": [
            "Department of Mathematics, Beijing University, Beijing, People's Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "M. Z.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Courant Institute of Mathematical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.482020.c", 
          "name": [
            "Courant Institute, New York University, 251 Mercer Street, 10012, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Papanicolaou", 
        "givenName": "G. C.", 
        "id": "sg:person.0616474541.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616474541.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Courant Institute of Mathematical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.482020.c", 
          "name": [
            "Courant Institute, New York University, 251 Mercer Street, 10012, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Varadhan", 
        "givenName": "S. R. S.", 
        "id": "sg:person.012652746377.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012652746377.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01464280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001060784", 
          "https://doi.org/10.1007/bf01464280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01464280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001060784", 
          "https://doi.org/10.1007/bf01464280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160190303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007522690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160190303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007522690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01210789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048441557", 
          "https://doi.org/10.1007/bf01210789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01210789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048441557", 
          "https://doi.org/10.1007/bf01210789"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988-03", 
    "datePublishedReg": "1988-03-01", 
    "description": "We consider a system of interacting diffusions. The variables are to be thought of as charges at sites indexed by a periodic one-dimensional lattice. The diffusion preserves the total charge and the interaction is of nearest neighbor type. With the appropriate scaling of lattice spacing and time, a nonlinear diffusion equation is derived for the time evolution of the macroscopic charge density.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01218476", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "118"
      }
    ], 
    "name": "Nonlinear diffusion limit for a system with nearest neighbor interactions", 
    "pagination": "31-59", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4f29696653dd89b8ecacab852024a910093cf2e1c9f799006f6ad8708f870439"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01218476"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016614190"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01218476", 
      "https://app.dimensions.ai/details/publication/pub.1016614190"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46751_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01218476"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01218476'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01218476'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01218476'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01218476'


 

This table displays all metadata directly associated to this object as RDF triples.

88 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01218476 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N8978735da3014114aaa8066661a0cd87
4 schema:citation sg:pub.10.1007/bf01210789
5 sg:pub.10.1007/bf01464280
6 https://doi.org/10.1002/cpa.3160190303
7 schema:datePublished 1988-03
8 schema:datePublishedReg 1988-03-01
9 schema:description We consider a system of interacting diffusions. The variables are to be thought of as charges at sites indexed by a periodic one-dimensional lattice. The diffusion preserves the total charge and the interaction is of nearest neighbor type. With the appropriate scaling of lattice spacing and time, a nonlinear diffusion equation is derived for the time evolution of the macroscopic charge density.
10 schema:genre research_article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N0e223bf37ea145dc84d204c7b71da6d7
14 Nd63fd63b6305431f91a3f2639c177782
15 sg:journal.1136216
16 schema:name Nonlinear diffusion limit for a system with nearest neighbor interactions
17 schema:pagination 31-59
18 schema:productId N0a8fc4e566ef4149aa02a78c95d23370
19 N972a24967b4c4f2bb3a339ef6a017980
20 Nc27bcc69a20f4001b421479ee0acc516
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016614190
22 https://doi.org/10.1007/bf01218476
23 schema:sdDatePublished 2019-04-11T13:30
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher N14ba38b546a444839394ab2f9c356130
26 schema:url http://link.springer.com/10.1007/BF01218476
27 sgo:license sg:explorer/license/
28 sgo:sdDataset articles
29 rdf:type schema:ScholarlyArticle
30 N0a8fc4e566ef4149aa02a78c95d23370 schema:name readcube_id
31 schema:value 4f29696653dd89b8ecacab852024a910093cf2e1c9f799006f6ad8708f870439
32 rdf:type schema:PropertyValue
33 N0e223bf37ea145dc84d204c7b71da6d7 schema:volumeNumber 118
34 rdf:type schema:PublicationVolume
35 N12a2b7ecbadb492884aea29a8b225a39 rdf:first sg:person.012652746377.67
36 rdf:rest rdf:nil
37 N14ba38b546a444839394ab2f9c356130 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N25bc112c1f2a4cbbb83d77aea431f890 schema:affiliation https://www.grid.ac/institutes/grid.11135.37
40 schema:familyName Guo
41 schema:givenName M. Z.
42 rdf:type schema:Person
43 N8978735da3014114aaa8066661a0cd87 rdf:first N25bc112c1f2a4cbbb83d77aea431f890
44 rdf:rest N9ac8aa66078f4b99935db1267fa4bbef
45 N972a24967b4c4f2bb3a339ef6a017980 schema:name dimensions_id
46 schema:value pub.1016614190
47 rdf:type schema:PropertyValue
48 N9ac8aa66078f4b99935db1267fa4bbef rdf:first sg:person.0616474541.25
49 rdf:rest N12a2b7ecbadb492884aea29a8b225a39
50 Nc27bcc69a20f4001b421479ee0acc516 schema:name doi
51 schema:value 10.1007/bf01218476
52 rdf:type schema:PropertyValue
53 Nd63fd63b6305431f91a3f2639c177782 schema:issueNumber 1
54 rdf:type schema:PublicationIssue
55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
56 schema:name Mathematical Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
59 schema:name Pure Mathematics
60 rdf:type schema:DefinedTerm
61 sg:journal.1136216 schema:issn 0010-3616
62 1432-0916
63 schema:name Communications in Mathematical Physics
64 rdf:type schema:Periodical
65 sg:person.012652746377.67 schema:affiliation https://www.grid.ac/institutes/grid.482020.c
66 schema:familyName Varadhan
67 schema:givenName S. R. S.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012652746377.67
69 rdf:type schema:Person
70 sg:person.0616474541.25 schema:affiliation https://www.grid.ac/institutes/grid.482020.c
71 schema:familyName Papanicolaou
72 schema:givenName G. C.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616474541.25
74 rdf:type schema:Person
75 sg:pub.10.1007/bf01210789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048441557
76 https://doi.org/10.1007/bf01210789
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bf01464280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001060784
79 https://doi.org/10.1007/bf01464280
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1002/cpa.3160190303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007522690
82 rdf:type schema:CreativeWork
83 https://www.grid.ac/institutes/grid.11135.37 schema:alternateName Peking University
84 schema:name Department of Mathematics, Beijing University, Beijing, People's Republic of China
85 rdf:type schema:Organization
86 https://www.grid.ac/institutes/grid.482020.c schema:alternateName Courant Institute of Mathematical Sciences
87 schema:name Courant Institute, New York University, 251 Mercer Street, 10012, New York, NY, USA
88 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...