Local rules for quasicrystals View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-12

AUTHORS

L. S. Levitov

ABSTRACT

The relationship of local ordering and long-range order is studied for quasicrystalline tilings of plane and space. Two versions of the concept of local rules are introduced: strong and weak. Necessary conditions of the existence of strong local rules are found. They are mainly reduced to the constraints for irrational numbers related to incommensurabilities of the quasicrystals. For planar quasicrystals the quadratic irrationalities play an important role. For three-dimensional quasicrystals not only quadratic but also cubic irrationalities are allowed. The existence of weak local rules is established for almost all two-dimensional quasicrystals based on quadratic irrationalities and for the three-dimensional quasicrystal having icosahedral symmetry. More... »

PAGES

627-666

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01218348

DOI

http://dx.doi.org/10.1007/bf01218348

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027233600


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Landau Institute for Theoretical Physics", 
          "id": "https://www.grid.ac/institutes/grid.436090.8", 
          "name": [
            "L. D. Landau Institute for Theoretical Physics, ul. Kosygina, dom 2, V-334, Moscow, USSR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Levitov", 
        "givenName": "L. S.", 
        "id": "sg:person.0605102273.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605102273.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1107/s0108767384001203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013858969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/13642818608240638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021103416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-4371(82)90359-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021120816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-4371(82)90359-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021120816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.53.1951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025518059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.53.1951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025518059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/19/2/020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059068280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.32.4892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060538532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.32.4892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060538532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.53.2477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060790818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.53.2477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060790818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.54.2688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060791657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.54.2688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060791657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.1461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.1461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.55.511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060792641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.1010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.1010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795465"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988-12", 
    "datePublishedReg": "1988-12-01", 
    "description": "The relationship of local ordering and long-range order is studied for quasicrystalline tilings of plane and space. Two versions of the concept of local rules are introduced: strong and weak. Necessary conditions of the existence of strong local rules are found. They are mainly reduced to the constraints for irrational numbers related to incommensurabilities of the quasicrystals. For planar quasicrystals the quadratic irrationalities play an important role. For three-dimensional quasicrystals not only quadratic but also cubic irrationalities are allowed. The existence of weak local rules is established for almost all two-dimensional quasicrystals based on quadratic irrationalities and for the three-dimensional quasicrystal having icosahedral symmetry.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01218348", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "119"
      }
    ], 
    "name": "Local rules for quasicrystals", 
    "pagination": "627-666", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "81baf28dc24634cae17090b5bad24c94cf3e1d8adbc7b28fde542e683da8ee09"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01218348"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027233600"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01218348", 
      "https://app.dimensions.ai/details/publication/pub.1027233600"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46775_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01218348"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01218348'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01218348'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01218348'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01218348'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01218348 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N6306eac5137f4c889d0452eee928d111
4 schema:citation https://doi.org/10.1016/0378-4371(82)90359-4
5 https://doi.org/10.1080/13642818608240638
6 https://doi.org/10.1088/0305-4470/19/2/020
7 https://doi.org/10.1103/physrevb.32.4892
8 https://doi.org/10.1103/physrevlett.53.1951
9 https://doi.org/10.1103/physrevlett.53.2477
10 https://doi.org/10.1103/physrevlett.54.2688
11 https://doi.org/10.1103/physrevlett.55.1461
12 https://doi.org/10.1103/physrevlett.55.511
13 https://doi.org/10.1103/physrevlett.59.1010
14 https://doi.org/10.1107/s0108767384001203
15 schema:datePublished 1988-12
16 schema:datePublishedReg 1988-12-01
17 schema:description The relationship of local ordering and long-range order is studied for quasicrystalline tilings of plane and space. Two versions of the concept of local rules are introduced: strong and weak. Necessary conditions of the existence of strong local rules are found. They are mainly reduced to the constraints for irrational numbers related to incommensurabilities of the quasicrystals. For planar quasicrystals the quadratic irrationalities play an important role. For three-dimensional quasicrystals not only quadratic but also cubic irrationalities are allowed. The existence of weak local rules is established for almost all two-dimensional quasicrystals based on quadratic irrationalities and for the three-dimensional quasicrystal having icosahedral symmetry.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N3e10373df77543a1875558545609aacd
22 N66c0e36d9c414ee794c3be28a871e08f
23 sg:journal.1136216
24 schema:name Local rules for quasicrystals
25 schema:pagination 627-666
26 schema:productId N2e4d4382ec1f4756a2a31877cb9dbbd7
27 N347064ca79c540c1a32eff72c55fa4f9
28 Na2165ea8a7d144a8ab6d97792699b88f
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027233600
30 https://doi.org/10.1007/bf01218348
31 schema:sdDatePublished 2019-04-11T13:35
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N65a4f7a00160469f9a3c95ceae7819a8
34 schema:url http://link.springer.com/10.1007/BF01218348
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N2e4d4382ec1f4756a2a31877cb9dbbd7 schema:name dimensions_id
39 schema:value pub.1027233600
40 rdf:type schema:PropertyValue
41 N347064ca79c540c1a32eff72c55fa4f9 schema:name doi
42 schema:value 10.1007/bf01218348
43 rdf:type schema:PropertyValue
44 N3e10373df77543a1875558545609aacd schema:issueNumber 4
45 rdf:type schema:PublicationIssue
46 N6306eac5137f4c889d0452eee928d111 rdf:first sg:person.0605102273.86
47 rdf:rest rdf:nil
48 N65a4f7a00160469f9a3c95ceae7819a8 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N66c0e36d9c414ee794c3be28a871e08f schema:volumeNumber 119
51 rdf:type schema:PublicationVolume
52 Na2165ea8a7d144a8ab6d97792699b88f schema:name readcube_id
53 schema:value 81baf28dc24634cae17090b5bad24c94cf3e1d8adbc7b28fde542e683da8ee09
54 rdf:type schema:PropertyValue
55 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
56 schema:name Mathematical Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
59 schema:name Pure Mathematics
60 rdf:type schema:DefinedTerm
61 sg:journal.1136216 schema:issn 0010-3616
62 1432-0916
63 schema:name Communications in Mathematical Physics
64 rdf:type schema:Periodical
65 sg:person.0605102273.86 schema:affiliation https://www.grid.ac/institutes/grid.436090.8
66 schema:familyName Levitov
67 schema:givenName L. S.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605102273.86
69 rdf:type schema:Person
70 https://doi.org/10.1016/0378-4371(82)90359-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021120816
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1080/13642818608240638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021103416
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1088/0305-4470/19/2/020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059068280
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1103/physrevb.32.4892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060538532
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1103/physrevlett.53.1951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025518059
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1103/physrevlett.53.2477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060790818
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1103/physrevlett.54.2688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060791657
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1103/physrevlett.55.1461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060792077
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1103/physrevlett.55.511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060792641
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1103/physrevlett.59.1010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795465
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1107/s0108767384001203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013858969
91 rdf:type schema:CreativeWork
92 https://www.grid.ac/institutes/grid.436090.8 schema:alternateName Landau Institute for Theoretical Physics
93 schema:name L. D. Landau Institute for Theoretical Physics, ul. Kosygina, dom 2, V-334, Moscow, USSR
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...