A Nekhoroshev-type theorem for Hamiltonian systems with infinitely many degrees of freedom View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-03

AUTHORS

Giancarlo Benettin, Jürg Fröhlich, Antonio Giorgilli

ABSTRACT

We study the propagation of lattice vibrations in models of disordered, classical anharmonic crystals. Using classical perturbation theory with an optimally chosen remainder term (i.e. a Nekhoroshev-type scheme), we are able to show that vibrations corresponding to localized initial conditions do essentially not propagate through the crystal up to times larger than any inverse power of the strength of the anharmonic couplings. More... »

PAGES

95-108

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01218262

DOI

http://dx.doi.org/10.1007/bf01218262

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020365094


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Padua", 
          "id": "https://www.grid.ac/institutes/grid.5608.b", 
          "name": [
            "Dipartimento di Fisica dell'Universit\u00e0 di Padova, Via Marzolo 8, I-35131, Padova, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Benettin", 
        "givenName": "Giancarlo", 
        "id": "sg:person.014313317357.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313317357.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swiss Federal Institute of Technology in Zurich", 
          "id": "https://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Theoretical Physics, ETH-H\u00f6nggerberg, CH-8093, Z\u00fcrich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fr\u00f6hlich", 
        "givenName": "J\u00fcrg", 
        "id": "sg:person.0720553177.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720553177.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Milan", 
          "id": "https://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Dipartimento di Fisica dell'Universit\u00e0 di Milano, Via Celoria 16, I-20133, Milano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giorgilli", 
        "givenName": "Antonio", 
        "id": "sg:person.010532704656.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01209475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011949639", 
          "https://doi.org/10.1007/bf01209475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01230921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020743826", 
          "https://doi.org/10.1007/bf01230921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01230921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020743826", 
          "https://doi.org/10.1007/bf01230921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01230338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031307341", 
          "https://doi.org/10.1007/bf01230338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01230338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031307341", 
          "https://doi.org/10.1007/bf01230338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01127712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034044964", 
          "https://doi.org/10.1007/bf01127712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01127712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034044964", 
          "https://doi.org/10.1007/bf01127712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01011301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043338720", 
          "https://doi.org/10.1007/bf01011301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01011301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043338720", 
          "https://doi.org/10.1007/bf01011301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01211753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044928177", 
          "https://doi.org/10.1007/bf01211753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01211753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044928177", 
          "https://doi.org/10.1007/bf01211753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01362250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047569998", 
          "https://doi.org/10.1007/bf01362250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01362250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047569998", 
          "https://doi.org/10.1007/bf01362250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.109.1492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060419891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.109.1492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060419891"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988-03", 
    "datePublishedReg": "1988-03-01", 
    "description": "We study the propagation of lattice vibrations in models of disordered, classical anharmonic crystals. Using classical perturbation theory with an optimally chosen remainder term (i.e. a Nekhoroshev-type scheme), we are able to show that vibrations corresponding to localized initial conditions do essentially not propagate through the crystal up to times larger than any inverse power of the strength of the anharmonic couplings.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01218262", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "119"
      }
    ], 
    "name": "A Nekhoroshev-type theorem for Hamiltonian systems with infinitely many degrees of freedom", 
    "pagination": "95-108", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6108c1fa8c54efa22b0782dd4420a3fc7b662547ee4039043f25a3ae1d68c262"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01218262"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020365094"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01218262", 
      "https://app.dimensions.ai/details/publication/pub.1020365094"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46779_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01218262"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01218262'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01218262'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01218262'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01218262'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01218262 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N2092f61d18e044a0a6253b68b07c4d5f
4 schema:citation sg:pub.10.1007/bf01011301
5 sg:pub.10.1007/bf01127712
6 sg:pub.10.1007/bf01209475
7 sg:pub.10.1007/bf01211753
8 sg:pub.10.1007/bf01230338
9 sg:pub.10.1007/bf01230921
10 sg:pub.10.1007/bf01362250
11 https://doi.org/10.1103/physrev.109.1492
12 schema:datePublished 1988-03
13 schema:datePublishedReg 1988-03-01
14 schema:description We study the propagation of lattice vibrations in models of disordered, classical anharmonic crystals. Using classical perturbation theory with an optimally chosen remainder term (i.e. a Nekhoroshev-type scheme), we are able to show that vibrations corresponding to localized initial conditions do essentially not propagate through the crystal up to times larger than any inverse power of the strength of the anharmonic couplings.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N049e76c3f64d44b286602b1f190d3e1b
19 N13ba3dc99dee4fd2b7ba17dae629a6c8
20 sg:journal.1136216
21 schema:name A Nekhoroshev-type theorem for Hamiltonian systems with infinitely many degrees of freedom
22 schema:pagination 95-108
23 schema:productId N00701444261b47098db21b11952ce267
24 N3b85c991a09046c9aeb6c5c521178794
25 Ncd2f1efff418428d98e4674b4cabde8e
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020365094
27 https://doi.org/10.1007/bf01218262
28 schema:sdDatePublished 2019-04-11T13:36
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N9d6662a2e961455f9900d32cbeb7d4ed
31 schema:url http://link.springer.com/10.1007/BF01218262
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N00701444261b47098db21b11952ce267 schema:name doi
36 schema:value 10.1007/bf01218262
37 rdf:type schema:PropertyValue
38 N049e76c3f64d44b286602b1f190d3e1b schema:issueNumber 1
39 rdf:type schema:PublicationIssue
40 N13ba3dc99dee4fd2b7ba17dae629a6c8 schema:volumeNumber 119
41 rdf:type schema:PublicationVolume
42 N2092f61d18e044a0a6253b68b07c4d5f rdf:first sg:person.014313317357.52
43 rdf:rest Nfd4e087604b74d12aaa8fe5e2d12baae
44 N3b85c991a09046c9aeb6c5c521178794 schema:name readcube_id
45 schema:value 6108c1fa8c54efa22b0782dd4420a3fc7b662547ee4039043f25a3ae1d68c262
46 rdf:type schema:PropertyValue
47 N8f27fb22aeb94edea75bb13f2971c2f8 rdf:first sg:person.010532704656.30
48 rdf:rest rdf:nil
49 N9d6662a2e961455f9900d32cbeb7d4ed schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 Ncd2f1efff418428d98e4674b4cabde8e schema:name dimensions_id
52 schema:value pub.1020365094
53 rdf:type schema:PropertyValue
54 Nfd4e087604b74d12aaa8fe5e2d12baae rdf:first sg:person.0720553177.45
55 rdf:rest N8f27fb22aeb94edea75bb13f2971c2f8
56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
57 schema:name Mathematical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
60 schema:name Pure Mathematics
61 rdf:type schema:DefinedTerm
62 sg:journal.1136216 schema:issn 0010-3616
63 1432-0916
64 schema:name Communications in Mathematical Physics
65 rdf:type schema:Periodical
66 sg:person.010532704656.30 schema:affiliation https://www.grid.ac/institutes/grid.4708.b
67 schema:familyName Giorgilli
68 schema:givenName Antonio
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30
70 rdf:type schema:Person
71 sg:person.014313317357.52 schema:affiliation https://www.grid.ac/institutes/grid.5608.b
72 schema:familyName Benettin
73 schema:givenName Giancarlo
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313317357.52
75 rdf:type schema:Person
76 sg:person.0720553177.45 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
77 schema:familyName Fröhlich
78 schema:givenName Jürg
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720553177.45
80 rdf:type schema:Person
81 sg:pub.10.1007/bf01011301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043338720
82 https://doi.org/10.1007/bf01011301
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/bf01127712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034044964
85 https://doi.org/10.1007/bf01127712
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/bf01209475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011949639
88 https://doi.org/10.1007/bf01209475
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bf01211753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044928177
91 https://doi.org/10.1007/bf01211753
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/bf01230338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031307341
94 https://doi.org/10.1007/bf01230338
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf01230921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020743826
97 https://doi.org/10.1007/bf01230921
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf01362250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047569998
100 https://doi.org/10.1007/bf01362250
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1103/physrev.109.1492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060419891
103 rdf:type schema:CreativeWork
104 https://www.grid.ac/institutes/grid.4708.b schema:alternateName University of Milan
105 schema:name Dipartimento di Fisica dell'Università di Milano, Via Celoria 16, I-20133, Milano, Italy
106 rdf:type schema:Organization
107 https://www.grid.ac/institutes/grid.5608.b schema:alternateName University of Padua
108 schema:name Dipartimento di Fisica dell'Università di Padova, Via Marzolo 8, I-35131, Padova, Italy
109 rdf:type schema:Organization
110 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
111 schema:name Theoretical Physics, ETH-Hönggerberg, CH-8093, Zürich, Switzerland
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...