A Nekhoroshev-type theorem for Hamiltonian systems with infinitely many degrees of freedom View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-03

AUTHORS

Giancarlo Benettin, Jürg Fröhlich, Antonio Giorgilli

ABSTRACT

We study the propagation of lattice vibrations in models of disordered, classical anharmonic crystals. Using classical perturbation theory with an optimally chosen remainder term (i.e. a Nekhoroshev-type scheme), we are able to show that vibrations corresponding to localized initial conditions do essentially not propagate through the crystal up to times larger than any inverse power of the strength of the anharmonic couplings. More... »

PAGES

95-108

References to SciGraph publications

  • 1986-08. Stability of motions near resonances in quasi-integrable Hamiltonian systems in JOURNAL OF STATISTICAL PHYSICS
  • 1985-09. A proof of Nekhoroshev's theorem for the stability times in nearly integrable Hamiltonian systems in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1986-02. Localization in disordered, nonlinear dynamical systems in JOURNAL OF STATISTICAL PHYSICS
  • 1975-09. Statistics of disordered chains in ZEITSCHRIFT FÜR PHYSIK B CONDENSED MATTER
  • 1985-10. Rigorous estimates for the series expansions of Hamiltonian perturbation theory in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1983-06. Absence of diffusion in the Anderson tight binding model for large disorder or low energy in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1986-09. On the elimination of non-resonance harmonics in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01218262

    DOI

    http://dx.doi.org/10.1007/bf01218262

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1020365094


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Padua", 
              "id": "https://www.grid.ac/institutes/grid.5608.b", 
              "name": [
                "Dipartimento di Fisica dell'Universit\u00e0 di Padova, Via Marzolo 8, I-35131, Padova, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Benettin", 
            "givenName": "Giancarlo", 
            "id": "sg:person.014313317357.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313317357.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Swiss Federal Institute of Technology in Zurich", 
              "id": "https://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "Theoretical Physics, ETH-H\u00f6nggerberg, CH-8093, Z\u00fcrich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fr\u00f6hlich", 
            "givenName": "J\u00fcrg", 
            "id": "sg:person.0720553177.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720553177.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Milan", 
              "id": "https://www.grid.ac/institutes/grid.4708.b", 
              "name": [
                "Dipartimento di Fisica dell'Universit\u00e0 di Milano, Via Celoria 16, I-20133, Milano, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Giorgilli", 
            "givenName": "Antonio", 
            "id": "sg:person.010532704656.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01209475", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011949639", 
              "https://doi.org/10.1007/bf01209475"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230921", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020743826", 
              "https://doi.org/10.1007/bf01230921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230921", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020743826", 
              "https://doi.org/10.1007/bf01230921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230338", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031307341", 
              "https://doi.org/10.1007/bf01230338"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230338", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031307341", 
              "https://doi.org/10.1007/bf01230338"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01127712", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034044964", 
              "https://doi.org/10.1007/bf01127712"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01127712", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034044964", 
              "https://doi.org/10.1007/bf01127712"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01011301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043338720", 
              "https://doi.org/10.1007/bf01011301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01011301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043338720", 
              "https://doi.org/10.1007/bf01011301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01211753", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044928177", 
              "https://doi.org/10.1007/bf01211753"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01211753", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044928177", 
              "https://doi.org/10.1007/bf01211753"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01362250", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047569998", 
              "https://doi.org/10.1007/bf01362250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01362250", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047569998", 
              "https://doi.org/10.1007/bf01362250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.109.1492", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060419891"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.109.1492", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060419891"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1988-03", 
        "datePublishedReg": "1988-03-01", 
        "description": "We study the propagation of lattice vibrations in models of disordered, classical anharmonic crystals. Using classical perturbation theory with an optimally chosen remainder term (i.e. a Nekhoroshev-type scheme), we are able to show that vibrations corresponding to localized initial conditions do essentially not propagate through the crystal up to times larger than any inverse power of the strength of the anharmonic couplings.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01218262", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "119"
          }
        ], 
        "name": "A Nekhoroshev-type theorem for Hamiltonian systems with infinitely many degrees of freedom", 
        "pagination": "95-108", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6108c1fa8c54efa22b0782dd4420a3fc7b662547ee4039043f25a3ae1d68c262"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01218262"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1020365094"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01218262", 
          "https://app.dimensions.ai/details/publication/pub.1020365094"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46779_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01218262"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01218262'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01218262'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01218262'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01218262'


     

    This table displays all metadata directly associated to this object as RDF triples.

    112 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01218262 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N84b7642c8ab649ceaafc0ad69eff9e25
    4 schema:citation sg:pub.10.1007/bf01011301
    5 sg:pub.10.1007/bf01127712
    6 sg:pub.10.1007/bf01209475
    7 sg:pub.10.1007/bf01211753
    8 sg:pub.10.1007/bf01230338
    9 sg:pub.10.1007/bf01230921
    10 sg:pub.10.1007/bf01362250
    11 https://doi.org/10.1103/physrev.109.1492
    12 schema:datePublished 1988-03
    13 schema:datePublishedReg 1988-03-01
    14 schema:description We study the propagation of lattice vibrations in models of disordered, classical anharmonic crystals. Using classical perturbation theory with an optimally chosen remainder term (i.e. a Nekhoroshev-type scheme), we are able to show that vibrations corresponding to localized initial conditions do essentially not propagate through the crystal up to times larger than any inverse power of the strength of the anharmonic couplings.
    15 schema:genre research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N23a5a36456fd494091e3e0a07d130763
    19 Nc4b7d4ffd87840bd89f1027e93317a32
    20 sg:journal.1136216
    21 schema:name A Nekhoroshev-type theorem for Hamiltonian systems with infinitely many degrees of freedom
    22 schema:pagination 95-108
    23 schema:productId N5e5bc29f75bc4e928160318be842895e
    24 N67e35364ddc4478597a543d2ea3fcf9d
    25 N8651d4f3e2694cbfb61ea514e1cedd6e
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020365094
    27 https://doi.org/10.1007/bf01218262
    28 schema:sdDatePublished 2019-04-11T13:36
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher N963058866cbf48a9a4e33be6b931233d
    31 schema:url http://link.springer.com/10.1007/BF01218262
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N011af5a78ecb48a3a2cd369ac99a81a6 rdf:first sg:person.0720553177.45
    36 rdf:rest Nb0a4344daf4f4e2ca422cdbc69b9a4cc
    37 N23a5a36456fd494091e3e0a07d130763 schema:volumeNumber 119
    38 rdf:type schema:PublicationVolume
    39 N5e5bc29f75bc4e928160318be842895e schema:name readcube_id
    40 schema:value 6108c1fa8c54efa22b0782dd4420a3fc7b662547ee4039043f25a3ae1d68c262
    41 rdf:type schema:PropertyValue
    42 N67e35364ddc4478597a543d2ea3fcf9d schema:name doi
    43 schema:value 10.1007/bf01218262
    44 rdf:type schema:PropertyValue
    45 N84b7642c8ab649ceaafc0ad69eff9e25 rdf:first sg:person.014313317357.52
    46 rdf:rest N011af5a78ecb48a3a2cd369ac99a81a6
    47 N8651d4f3e2694cbfb61ea514e1cedd6e schema:name dimensions_id
    48 schema:value pub.1020365094
    49 rdf:type schema:PropertyValue
    50 N963058866cbf48a9a4e33be6b931233d schema:name Springer Nature - SN SciGraph project
    51 rdf:type schema:Organization
    52 Nb0a4344daf4f4e2ca422cdbc69b9a4cc rdf:first sg:person.010532704656.30
    53 rdf:rest rdf:nil
    54 Nc4b7d4ffd87840bd89f1027e93317a32 schema:issueNumber 1
    55 rdf:type schema:PublicationIssue
    56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Mathematical Sciences
    58 rdf:type schema:DefinedTerm
    59 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Pure Mathematics
    61 rdf:type schema:DefinedTerm
    62 sg:journal.1136216 schema:issn 0010-3616
    63 1432-0916
    64 schema:name Communications in Mathematical Physics
    65 rdf:type schema:Periodical
    66 sg:person.010532704656.30 schema:affiliation https://www.grid.ac/institutes/grid.4708.b
    67 schema:familyName Giorgilli
    68 schema:givenName Antonio
    69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010532704656.30
    70 rdf:type schema:Person
    71 sg:person.014313317357.52 schema:affiliation https://www.grid.ac/institutes/grid.5608.b
    72 schema:familyName Benettin
    73 schema:givenName Giancarlo
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313317357.52
    75 rdf:type schema:Person
    76 sg:person.0720553177.45 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
    77 schema:familyName Fröhlich
    78 schema:givenName Jürg
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720553177.45
    80 rdf:type schema:Person
    81 sg:pub.10.1007/bf01011301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043338720
    82 https://doi.org/10.1007/bf01011301
    83 rdf:type schema:CreativeWork
    84 sg:pub.10.1007/bf01127712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034044964
    85 https://doi.org/10.1007/bf01127712
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1007/bf01209475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011949639
    88 https://doi.org/10.1007/bf01209475
    89 rdf:type schema:CreativeWork
    90 sg:pub.10.1007/bf01211753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044928177
    91 https://doi.org/10.1007/bf01211753
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1007/bf01230338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031307341
    94 https://doi.org/10.1007/bf01230338
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/bf01230921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020743826
    97 https://doi.org/10.1007/bf01230921
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/bf01362250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047569998
    100 https://doi.org/10.1007/bf01362250
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1103/physrev.109.1492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060419891
    103 rdf:type schema:CreativeWork
    104 https://www.grid.ac/institutes/grid.4708.b schema:alternateName University of Milan
    105 schema:name Dipartimento di Fisica dell'Università di Milano, Via Celoria 16, I-20133, Milano, Italy
    106 rdf:type schema:Organization
    107 https://www.grid.ac/institutes/grid.5608.b schema:alternateName University of Padua
    108 schema:name Dipartimento di Fisica dell'Università di Padova, Via Marzolo 8, I-35131, Padova, Italy
    109 rdf:type schema:Organization
    110 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
    111 schema:name Theoretical Physics, ETH-Hönggerberg, CH-8093, Zürich, Switzerland
    112 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...