Soliton quantization in lattice field theories View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-06

AUTHORS

J. Fröhlich, P. A. Marchetti

ABSTRACT

Quantization of solitons in terms of Euclidean region functional integrals is developed, and Osterwalder-Schrader reconstruction is extended to theories with topological solitons. The quantization method is applied to several lattice field theories with solitons, and the particle structure in the soliton sectors of such theories is analyzed. A construction of magnetic monopoles in the four-dimensional, compactU(1)-model, in the QED phase, is indicated as well. More... »

PAGES

343-383

References to SciGraph publications

  • 1982-08. The physical state space of quantum electrodynamics in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1983-03. Charged states in ℤ2 gauge theories in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1976-10. New super-selection sectors (“soliton-states”) in two dimensional Bose quantum field models in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1986-06. Spontaneous symmetry breakdown in the abelian Higgs model in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1965-03. On the vacuum state in quantum field theory. II in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1979-10. On the statistical mechanics of the gauge invariant Ising model in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01217817

    DOI

    http://dx.doi.org/10.1007/bf01217817

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1042555069


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Civil Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Swiss Federal Institute of Technology in Zurich", 
              "id": "https://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "Theoretical Physics, ETH-H\u00f6nggerberg, CH-8093, Z\u00fcrich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fr\u00f6hlich", 
            "givenName": "J.", 
            "id": "sg:person.0720553177.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720553177.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Padua", 
              "id": "https://www.grid.ac/institutes/grid.5608.b", 
              "name": [
                "Dipartimento di Fisica, Universit\u00e0 di Padova, I.N.F.N. sez. Padova, I-35100, Padova, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marchetti", 
            "givenName": "P. A.", 
            "id": "sg:person.014156146525.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014156146525.93"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01649590", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003564683", 
              "https://doi.org/10.1007/bf01649590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01649590", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003564683", 
              "https://doi.org/10.1007/bf01649590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01609844", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005270714", 
              "https://doi.org/10.1007/bf01609844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01609844", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005270714", 
              "https://doi.org/10.1007/bf01609844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-4916(84)90053-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010370144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01206315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021851026", 
              "https://doi.org/10.1007/bf01206315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01206315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021851026", 
              "https://doi.org/10.1007/bf01206315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01238846", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030351263", 
              "https://doi.org/10.1007/bf01238846"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(80)90485-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032415186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0550-3213(80)90485-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032415186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01211599", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049367908", 
              "https://doi.org/10.1007/bf01211599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01211599", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049367908", 
              "https://doi.org/10.1007/bf01211599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02029133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050955083", 
              "https://doi.org/10.1007/bf02029133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-4916(84)90121-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052187725"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.48.1144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060786991"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.48.1144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060786991"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1209/0295-5075/2/12/008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064229075"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1987-06", 
        "datePublishedReg": "1987-06-01", 
        "description": "Quantization of solitons in terms of Euclidean region functional integrals is developed, and Osterwalder-Schrader reconstruction is extended to theories with topological solitons. The quantization method is applied to several lattice field theories with solitons, and the particle structure in the soliton sectors of such theories is analyzed. A construction of magnetic monopoles in the four-dimensional, compactU(1)-model, in the QED phase, is indicated as well.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01217817", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136216", 
            "issn": [
              "0010-3616", 
              "1432-0916"
            ], 
            "name": "Communications in Mathematical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "112"
          }
        ], 
        "name": "Soliton quantization in lattice field theories", 
        "pagination": "343-383", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "cab4faf90c77b24a327cbe6bcaa9c056c7458e7a72d86fc18d72838f7e691236"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01217817"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1042555069"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01217817", 
          "https://app.dimensions.ai/details/publication/pub.1042555069"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T19:05", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000496.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01217817"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01217817'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01217817'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01217817'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01217817'


     

    This table displays all metadata directly associated to this object as RDF triples.

    110 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01217817 schema:about anzsrc-for:09
    2 anzsrc-for:0905
    3 schema:author Nc7230f08ec474abbba44c22bd8a06ecd
    4 schema:citation sg:pub.10.1007/bf01206315
    5 sg:pub.10.1007/bf01211599
    6 sg:pub.10.1007/bf01238846
    7 sg:pub.10.1007/bf01609844
    8 sg:pub.10.1007/bf01649590
    9 sg:pub.10.1007/bf02029133
    10 https://doi.org/10.1016/0003-4916(84)90053-8
    11 https://doi.org/10.1016/0003-4916(84)90121-0
    12 https://doi.org/10.1016/0550-3213(80)90485-x
    13 https://doi.org/10.1103/physrevlett.48.1144
    14 https://doi.org/10.1209/0295-5075/2/12/008
    15 schema:datePublished 1987-06
    16 schema:datePublishedReg 1987-06-01
    17 schema:description Quantization of solitons in terms of Euclidean region functional integrals is developed, and Osterwalder-Schrader reconstruction is extended to theories with topological solitons. The quantization method is applied to several lattice field theories with solitons, and the particle structure in the soliton sectors of such theories is analyzed. A construction of magnetic monopoles in the four-dimensional, compactU(1)-model, in the QED phase, is indicated as well.
    18 schema:genre research_article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N1691b15c152c4d1eac574f853128aa90
    22 Nc496e13d5dfe44148611d7cd3d157b3a
    23 sg:journal.1136216
    24 schema:name Soliton quantization in lattice field theories
    25 schema:pagination 343-383
    26 schema:productId N0051a14bd33845379f8da85b75d771e2
    27 N683613a5ce1e407a98144be5bca30df1
    28 Nae4a54a19be946679b9b3eab52743494
    29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042555069
    30 https://doi.org/10.1007/bf01217817
    31 schema:sdDatePublished 2019-04-10T19:05
    32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    33 schema:sdPublisher Nf4eb7d37ef9a4d1690ec3d6edc4904e6
    34 schema:url http://link.springer.com/10.1007/BF01217817
    35 sgo:license sg:explorer/license/
    36 sgo:sdDataset articles
    37 rdf:type schema:ScholarlyArticle
    38 N0051a14bd33845379f8da85b75d771e2 schema:name readcube_id
    39 schema:value cab4faf90c77b24a327cbe6bcaa9c056c7458e7a72d86fc18d72838f7e691236
    40 rdf:type schema:PropertyValue
    41 N1691b15c152c4d1eac574f853128aa90 schema:volumeNumber 112
    42 rdf:type schema:PublicationVolume
    43 N683613a5ce1e407a98144be5bca30df1 schema:name dimensions_id
    44 schema:value pub.1042555069
    45 rdf:type schema:PropertyValue
    46 Nae4a54a19be946679b9b3eab52743494 schema:name doi
    47 schema:value 10.1007/bf01217817
    48 rdf:type schema:PropertyValue
    49 Nb1ff5b9139814af8a7293ded589fe4fa rdf:first sg:person.014156146525.93
    50 rdf:rest rdf:nil
    51 Nc496e13d5dfe44148611d7cd3d157b3a schema:issueNumber 2
    52 rdf:type schema:PublicationIssue
    53 Nc7230f08ec474abbba44c22bd8a06ecd rdf:first sg:person.0720553177.45
    54 rdf:rest Nb1ff5b9139814af8a7293ded589fe4fa
    55 Nf4eb7d37ef9a4d1690ec3d6edc4904e6 schema:name Springer Nature - SN SciGraph project
    56 rdf:type schema:Organization
    57 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Engineering
    59 rdf:type schema:DefinedTerm
    60 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Civil Engineering
    62 rdf:type schema:DefinedTerm
    63 sg:journal.1136216 schema:issn 0010-3616
    64 1432-0916
    65 schema:name Communications in Mathematical Physics
    66 rdf:type schema:Periodical
    67 sg:person.014156146525.93 schema:affiliation https://www.grid.ac/institutes/grid.5608.b
    68 schema:familyName Marchetti
    69 schema:givenName P. A.
    70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014156146525.93
    71 rdf:type schema:Person
    72 sg:person.0720553177.45 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
    73 schema:familyName Fröhlich
    74 schema:givenName J.
    75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720553177.45
    76 rdf:type schema:Person
    77 sg:pub.10.1007/bf01206315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021851026
    78 https://doi.org/10.1007/bf01206315
    79 rdf:type schema:CreativeWork
    80 sg:pub.10.1007/bf01211599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049367908
    81 https://doi.org/10.1007/bf01211599
    82 rdf:type schema:CreativeWork
    83 sg:pub.10.1007/bf01238846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030351263
    84 https://doi.org/10.1007/bf01238846
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.1007/bf01609844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005270714
    87 https://doi.org/10.1007/bf01609844
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1007/bf01649590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003564683
    90 https://doi.org/10.1007/bf01649590
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/bf02029133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050955083
    93 https://doi.org/10.1007/bf02029133
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1016/0003-4916(84)90053-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010370144
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1016/0003-4916(84)90121-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052187725
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1016/0550-3213(80)90485-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032415186
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1103/physrevlett.48.1144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060786991
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1209/0295-5075/2/12/008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064229075
    104 rdf:type schema:CreativeWork
    105 https://www.grid.ac/institutes/grid.5608.b schema:alternateName University of Padua
    106 schema:name Dipartimento di Fisica, Università di Padova, I.N.F.N. sez. Padova, I-35100, Padova, Italy
    107 rdf:type schema:Organization
    108 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
    109 schema:name Theoretical Physics, ETH-Hönggerberg, CH-8093, Zürich, Switzerland
    110 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...