Kähler-Einstein metrics on complex surfaces withC1>0 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-03

AUTHORS

Gang Tian, Shing-Tung Yau

ABSTRACT

Various estimates of the lower bound of the holomorphic invariant α(M), defined in [T], are given here by using branched coverings, potential estimates and Lelong numbers of positive,d-closed (1, 1) currents of certain type, etc. These estimates are then applied to produce Kähler-Einstein metrics on complex surfaces withC1>0, in particular, we prove that there are Kähler-Einstein structures withC1>0 on any manifold of differential type. More... »

PAGES

175-203

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01217685

DOI

http://dx.doi.org/10.1007/bf01217685

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019072662


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Mathematics, University of California, San Diego, 92093, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tian", 
        "givenName": "Gang", 
        "id": "sg:person.014342477647.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014342477647.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Mathematics, University of California, San Diego, 92093, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yau", 
        "givenName": "Shing-Tung", 
        "id": "sg:person.01014421431.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014421431.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01389217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015213003", 
          "https://doi.org/10.1007/bf01389217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1019285404", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-96379-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019285404", 
          "https://doi.org/10.1007/978-3-642-96379-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-96379-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019285404", 
          "https://doi.org/10.1007/978-3-642-96379-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01389965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048539722", 
          "https://doi.org/10.1007/bf01389965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/im1982v019n03abeh001427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058167076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1971131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069676430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2373563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069900109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.24033/bsmf.1743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083660713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.24033/bsmf.1954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083660947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4310/jdg/1214439291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084459510"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1987-03", 
    "datePublishedReg": "1987-03-01", 
    "description": "Various estimates of the lower bound of the holomorphic invariant \u03b1(M), defined in [T], are given here by using branched coverings, potential estimates and Lelong numbers of positive,d-closed (1, 1) currents of certain type, etc. These estimates are then applied to produce K\u00e4hler-Einstein metrics on complex surfaces withC1>0, in particular, we prove that there are K\u00e4hler-Einstein structures withC1>0 on any manifold of differential type.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf01217685", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136216", 
        "issn": [
          "0010-3616", 
          "1432-0916"
        ], 
        "name": "Communications in Mathematical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "112"
      }
    ], 
    "name": "K\u00e4hler-Einstein metrics on complex surfaces withC1>0", 
    "pagination": "175-203", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5ae00d9bacabe5876f1132e289e79ee4f8a355e74ccd882ea688fd643027b510"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01217685"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019072662"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01217685", 
      "https://app.dimensions.ai/details/publication/pub.1019072662"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46738_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF01217685"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01217685'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01217685'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01217685'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01217685'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01217685 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N4b8fe7bf4c674691af589f351324c83f
4 schema:citation sg:pub.10.1007/978-3-642-96379-7
5 sg:pub.10.1007/bf01389217
6 sg:pub.10.1007/bf01389965
7 https://app.dimensions.ai/details/publication/pub.1019285404
8 https://doi.org/10.1070/im1982v019n03abeh001427
9 https://doi.org/10.2307/1971131
10 https://doi.org/10.2307/2373563
11 https://doi.org/10.24033/bsmf.1743
12 https://doi.org/10.24033/bsmf.1954
13 https://doi.org/10.4310/jdg/1214439291
14 schema:datePublished 1987-03
15 schema:datePublishedReg 1987-03-01
16 schema:description Various estimates of the lower bound of the holomorphic invariant α(M), defined in [T], are given here by using branched coverings, potential estimates and Lelong numbers of positive,d-closed (1, 1) currents of certain type, etc. These estimates are then applied to produce Kähler-Einstein metrics on complex surfaces withC1>0, in particular, we prove that there are Kähler-Einstein structures withC1>0 on any manifold of differential type.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N01363e39b9d046b5a19d856c717b0890
21 N40cafc604da44bb6aed837a408176f62
22 sg:journal.1136216
23 schema:name Kähler-Einstein metrics on complex surfaces withC1>0
24 schema:pagination 175-203
25 schema:productId N676187b1af014a9386eddf11bdcaf556
26 N8cf168ef9aba4f02a6bed492e548242d
27 Na5ded31b98c446e58012c7de5c82b41d
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019072662
29 https://doi.org/10.1007/bf01217685
30 schema:sdDatePublished 2019-04-11T13:27
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Nb7662e60583040a98291cc84803a9cba
33 schema:url http://link.springer.com/10.1007/BF01217685
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N01363e39b9d046b5a19d856c717b0890 schema:volumeNumber 112
38 rdf:type schema:PublicationVolume
39 N40cafc604da44bb6aed837a408176f62 schema:issueNumber 1
40 rdf:type schema:PublicationIssue
41 N4b8fe7bf4c674691af589f351324c83f rdf:first sg:person.014342477647.29
42 rdf:rest N9ad9e3a0818d4afeb48b728e42ecc963
43 N676187b1af014a9386eddf11bdcaf556 schema:name doi
44 schema:value 10.1007/bf01217685
45 rdf:type schema:PropertyValue
46 N7e87306a3f3a42098399a99de2aca4cf schema:name Department of Mathematics, University of California, San Diego, 92093, La Jolla, CA, USA
47 rdf:type schema:Organization
48 N8cf168ef9aba4f02a6bed492e548242d schema:name dimensions_id
49 schema:value pub.1019072662
50 rdf:type schema:PropertyValue
51 N9ad9e3a0818d4afeb48b728e42ecc963 rdf:first sg:person.01014421431.12
52 rdf:rest rdf:nil
53 Na5ded31b98c446e58012c7de5c82b41d schema:name readcube_id
54 schema:value 5ae00d9bacabe5876f1132e289e79ee4f8a355e74ccd882ea688fd643027b510
55 rdf:type schema:PropertyValue
56 Nb7662e60583040a98291cc84803a9cba schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 Nc006a33879b74ddaa110b05c817f069d schema:name Department of Mathematics, University of California, San Diego, 92093, La Jolla, CA, USA
59 rdf:type schema:Organization
60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
61 schema:name Mathematical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
64 schema:name Pure Mathematics
65 rdf:type schema:DefinedTerm
66 sg:journal.1136216 schema:issn 0010-3616
67 1432-0916
68 schema:name Communications in Mathematical Physics
69 rdf:type schema:Periodical
70 sg:person.01014421431.12 schema:affiliation Nc006a33879b74ddaa110b05c817f069d
71 schema:familyName Yau
72 schema:givenName Shing-Tung
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014421431.12
74 rdf:type schema:Person
75 sg:person.014342477647.29 schema:affiliation N7e87306a3f3a42098399a99de2aca4cf
76 schema:familyName Tian
77 schema:givenName Gang
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014342477647.29
79 rdf:type schema:Person
80 sg:pub.10.1007/978-3-642-96379-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019285404
81 https://doi.org/10.1007/978-3-642-96379-7
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bf01389217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015213003
84 https://doi.org/10.1007/bf01389217
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/bf01389965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048539722
87 https://doi.org/10.1007/bf01389965
88 rdf:type schema:CreativeWork
89 https://app.dimensions.ai/details/publication/pub.1019285404 schema:CreativeWork
90 https://doi.org/10.1070/im1982v019n03abeh001427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058167076
91 rdf:type schema:CreativeWork
92 https://doi.org/10.2307/1971131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069676430
93 rdf:type schema:CreativeWork
94 https://doi.org/10.2307/2373563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069900109
95 rdf:type schema:CreativeWork
96 https://doi.org/10.24033/bsmf.1743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083660713
97 rdf:type schema:CreativeWork
98 https://doi.org/10.24033/bsmf.1954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083660947
99 rdf:type schema:CreativeWork
100 https://doi.org/10.4310/jdg/1214439291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084459510
101 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...