Verwandte Operatoren View Full Text


Ontology type: schema:ScholarlyArticle     

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01214484

DOI

http://dx.doi.org/10.1007/bf01214484

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019542800


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mathematisches Institut I der Universit\u00e4t Karlsruhe, Kaiserstra\u00dfe 12, D-7500, Karlsruhe 1, Bundesrepublik Deutschland", 
          "id": "http://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Mathematisches Institut I der Universit\u00e4t Karlsruhe, Kaiserstra\u00dfe 12, D-7500, Karlsruhe 1, Bundesrepublik Deutschland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mertins", 
        "givenName": "Ulrich", 
        "id": "sg:person.015655725313.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015655725313.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01361943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003019109", 
          "https://doi.org/10.1007/bf01361943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01168722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001587229", 
          "https://doi.org/10.1007/bf01168722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01344009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004176475", 
          "https://doi.org/10.1007/bf01344009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-24912-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039991038", 
          "https://doi.org/10.1007/978-3-662-24912-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1978-06", 
    "datePublishedReg": "1978-06-01", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01214484", 
    "inLanguage": "de", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136443", 
        "issn": [
          "0025-5874", 
          "1432-1823"
        ], 
        "name": "Mathematische Zeitschrift", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "159"
      }
    ], 
    "name": "Verwandte Operatoren", 
    "pagination": "107-121", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019542800"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01214484"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01214484", 
      "https://app.dimensions.ai/details/publication/pub.1019542800"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T17:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_136.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01214484"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01214484'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01214484'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01214484'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01214484'


 

This table displays all metadata directly associated to this object as RDF triples.

73 TRIPLES      20 PREDICATES      29 URIs      17 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01214484 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N04ea762e1edd4974808b478b743c269c
4 schema:citation sg:pub.10.1007/978-3-662-24912-3
5 sg:pub.10.1007/bf01168722
6 sg:pub.10.1007/bf01344009
7 sg:pub.10.1007/bf01361943
8 schema:datePublished 1978-06
9 schema:datePublishedReg 1978-06-01
10 schema:genre article
11 schema:inLanguage de
12 schema:isAccessibleForFree false
13 schema:isPartOf Na3d1106106344b529aa8205c7d90932f
14 Nc95312ed783844219e91327e41749a29
15 sg:journal.1136443
16 schema:name Verwandte Operatoren
17 schema:pagination 107-121
18 schema:productId N354eba9bcfe5448baf6fc517807804fa
19 Ndc8dbcc10e69497eae0006fe21a75869
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019542800
21 https://doi.org/10.1007/bf01214484
22 schema:sdDatePublished 2021-11-01T17:54
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N841a3447d95043bebae1444303491850
25 schema:url https://doi.org/10.1007/bf01214484
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N04ea762e1edd4974808b478b743c269c rdf:first sg:person.015655725313.10
30 rdf:rest rdf:nil
31 N354eba9bcfe5448baf6fc517807804fa schema:name dimensions_id
32 schema:value pub.1019542800
33 rdf:type schema:PropertyValue
34 N841a3447d95043bebae1444303491850 schema:name Springer Nature - SN SciGraph project
35 rdf:type schema:Organization
36 Na3d1106106344b529aa8205c7d90932f schema:issueNumber 2
37 rdf:type schema:PublicationIssue
38 Nc95312ed783844219e91327e41749a29 schema:volumeNumber 159
39 rdf:type schema:PublicationVolume
40 Ndc8dbcc10e69497eae0006fe21a75869 schema:name doi
41 schema:value 10.1007/bf01214484
42 rdf:type schema:PropertyValue
43 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
44 schema:name Mathematical Sciences
45 rdf:type schema:DefinedTerm
46 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
47 schema:name Pure Mathematics
48 rdf:type schema:DefinedTerm
49 sg:journal.1136443 schema:issn 0025-5874
50 1432-1823
51 schema:name Mathematische Zeitschrift
52 schema:publisher Springer Nature
53 rdf:type schema:Periodical
54 sg:person.015655725313.10 schema:affiliation grid-institutes:grid.7892.4
55 schema:familyName Mertins
56 schema:givenName Ulrich
57 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015655725313.10
58 rdf:type schema:Person
59 sg:pub.10.1007/978-3-662-24912-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039991038
60 https://doi.org/10.1007/978-3-662-24912-3
61 rdf:type schema:CreativeWork
62 sg:pub.10.1007/bf01168722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001587229
63 https://doi.org/10.1007/bf01168722
64 rdf:type schema:CreativeWork
65 sg:pub.10.1007/bf01344009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004176475
66 https://doi.org/10.1007/bf01344009
67 rdf:type schema:CreativeWork
68 sg:pub.10.1007/bf01361943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003019109
69 https://doi.org/10.1007/bf01361943
70 rdf:type schema:CreativeWork
71 grid-institutes:grid.7892.4 schema:alternateName Mathematisches Institut I der Universität Karlsruhe, Kaiserstraße 12, D-7500, Karlsruhe 1, Bundesrepublik Deutschland
72 schema:name Mathematisches Institut I der Universität Karlsruhe, Kaiserstraße 12, D-7500, Karlsruhe 1, Bundesrepublik Deutschland
73 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...