Verwandte Operatoren View Full Text


Ontology type: schema:ScholarlyArticle     

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf01214484

DOI

http://dx.doi.org/10.1007/bf01214484

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019542800


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mathematisches Institut I der Universit\u00e4t Karlsruhe, Kaiserstra\u00dfe 12, D-7500, Karlsruhe 1, Bundesrepublik Deutschland", 
          "id": "http://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Mathematisches Institut I der Universit\u00e4t Karlsruhe, Kaiserstra\u00dfe 12, D-7500, Karlsruhe 1, Bundesrepublik Deutschland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mertins", 
        "givenName": "Ulrich", 
        "id": "sg:person.015655725313.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015655725313.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01361943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003019109", 
          "https://doi.org/10.1007/bf01361943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01168722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001587229", 
          "https://doi.org/10.1007/bf01168722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01344009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004176475", 
          "https://doi.org/10.1007/bf01344009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-24912-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039991038", 
          "https://doi.org/10.1007/978-3-662-24912-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1978-06", 
    "datePublishedReg": "1978-06-01", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf01214484", 
    "inLanguage": "de", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136443", 
        "issn": [
          "0025-5874", 
          "1432-1823"
        ], 
        "name": "Mathematische Zeitschrift", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "159"
      }
    ], 
    "name": "Verwandte Operatoren", 
    "pagination": "107-121", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019542800"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf01214484"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf01214484", 
      "https://app.dimensions.ai/details/publication/pub.1019542800"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T17:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_136.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf01214484"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01214484'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01214484'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01214484'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01214484'


 

This table displays all metadata directly associated to this object as RDF triples.

73 TRIPLES      20 PREDICATES      29 URIs      17 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf01214484 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N49233286c51c4c8cb4d46ca10fd368c9
4 schema:citation sg:pub.10.1007/978-3-662-24912-3
5 sg:pub.10.1007/bf01168722
6 sg:pub.10.1007/bf01344009
7 sg:pub.10.1007/bf01361943
8 schema:datePublished 1978-06
9 schema:datePublishedReg 1978-06-01
10 schema:genre article
11 schema:inLanguage de
12 schema:isAccessibleForFree false
13 schema:isPartOf Nc98dbff135444292b2eeb7bf1538918c
14 Nf24ab242ba4442d3a42bc23aac8c1f93
15 sg:journal.1136443
16 schema:name Verwandte Operatoren
17 schema:pagination 107-121
18 schema:productId N257cb78cee1341499a9f06a79bda670f
19 Nc9d30e9372d3496097a0447034439ac1
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019542800
21 https://doi.org/10.1007/bf01214484
22 schema:sdDatePublished 2021-11-01T17:54
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher Nd9d2314c3057466d89a1927625e93888
25 schema:url https://doi.org/10.1007/bf01214484
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N257cb78cee1341499a9f06a79bda670f schema:name doi
30 schema:value 10.1007/bf01214484
31 rdf:type schema:PropertyValue
32 N49233286c51c4c8cb4d46ca10fd368c9 rdf:first sg:person.015655725313.10
33 rdf:rest rdf:nil
34 Nc98dbff135444292b2eeb7bf1538918c schema:volumeNumber 159
35 rdf:type schema:PublicationVolume
36 Nc9d30e9372d3496097a0447034439ac1 schema:name dimensions_id
37 schema:value pub.1019542800
38 rdf:type schema:PropertyValue
39 Nd9d2314c3057466d89a1927625e93888 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 Nf24ab242ba4442d3a42bc23aac8c1f93 schema:issueNumber 2
42 rdf:type schema:PublicationIssue
43 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
44 schema:name Mathematical Sciences
45 rdf:type schema:DefinedTerm
46 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
47 schema:name Pure Mathematics
48 rdf:type schema:DefinedTerm
49 sg:journal.1136443 schema:issn 0025-5874
50 1432-1823
51 schema:name Mathematische Zeitschrift
52 schema:publisher Springer Nature
53 rdf:type schema:Periodical
54 sg:person.015655725313.10 schema:affiliation grid-institutes:grid.7892.4
55 schema:familyName Mertins
56 schema:givenName Ulrich
57 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015655725313.10
58 rdf:type schema:Person
59 sg:pub.10.1007/978-3-662-24912-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039991038
60 https://doi.org/10.1007/978-3-662-24912-3
61 rdf:type schema:CreativeWork
62 sg:pub.10.1007/bf01168722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001587229
63 https://doi.org/10.1007/bf01168722
64 rdf:type schema:CreativeWork
65 sg:pub.10.1007/bf01344009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004176475
66 https://doi.org/10.1007/bf01344009
67 rdf:type schema:CreativeWork
68 sg:pub.10.1007/bf01361943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003019109
69 https://doi.org/10.1007/bf01361943
70 rdf:type schema:CreativeWork
71 grid-institutes:grid.7892.4 schema:alternateName Mathematisches Institut I der Universität Karlsruhe, Kaiserstraße 12, D-7500, Karlsruhe 1, Bundesrepublik Deutschland
72 schema:name Mathematisches Institut I der Universität Karlsruhe, Kaiserstraße 12, D-7500, Karlsruhe 1, Bundesrepublik Deutschland
73 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...