Fictitious play in 2×2 games: A geometric proof of convergence View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-11

AUTHORS

Andrew Metrick, Ben Polak

ABSTRACT

This paper provides a new proof of Miyasawa's (1961) result showing the convergence of fictitious play in 2×2 games. The novelty of the approach used here is that it rests entirely on the geometric properties of the best-response correspondence. The geometric approach greatly shortens the exposition, and it suggests some possible extensions to more difficult convergence conjectures. More... »

PAGES

923-933

References to SciGraph publications

  • 1971-12. Über periodizitätseigenschaften spieltheoretischer lernprozesse in PROBABILITY THEORY AND RELATED FIELDS
  • Journal

    TITLE

    Economic Theory

    ISSUE

    6

    VOLUME

    4

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf01213819

    DOI

    http://dx.doi.org/10.1007/bf01213819

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1032827484


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Economics, Harvard University, 02138, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Metrick", 
            "givenName": "Andrew", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Society of Fellows, Harvard University, 02138, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Polak", 
            "givenName": "Ben", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00536300", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035297058", 
              "https://doi.org/10.1007/bf00536300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/game.1996.0044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048802310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/1969530", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069674905"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1994-11", 
        "datePublishedReg": "1994-11-01", 
        "description": "This paper provides a new proof of Miyasawa's (1961) result showing the convergence of fictitious play in 2\u00d72 games. The novelty of the approach used here is that it rests entirely on the geometric properties of the best-response correspondence. The geometric approach greatly shortens the exposition, and it suggests some possible extensions to more difficult convergence conjectures.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf01213819", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136838", 
            "issn": [
              "0938-2259", 
              "1432-0479"
            ], 
            "name": "Economic Theory", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "4"
          }
        ], 
        "name": "Fictitious play in 2\u00d72 games: A geometric proof of convergence", 
        "pagination": "923-933", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9c62870fe8b921646550be6b6fc4bd64deb946ddb995fc985744ab4e1cfddcdc"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf01213819"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1032827484"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf01213819", 
          "https://app.dimensions.ai/details/publication/pub.1032827484"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46738_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF01213819"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf01213819'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf01213819'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf01213819'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf01213819'


     

    This table displays all metadata directly associated to this object as RDF triples.

    77 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf01213819 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N3b66efc21df049eaa2f1765f7c9bd449
    4 schema:citation sg:pub.10.1007/bf00536300
    5 https://doi.org/10.1006/game.1996.0044
    6 https://doi.org/10.2307/1969530
    7 schema:datePublished 1994-11
    8 schema:datePublishedReg 1994-11-01
    9 schema:description This paper provides a new proof of Miyasawa's (1961) result showing the convergence of fictitious play in 2×2 games. The novelty of the approach used here is that it rests entirely on the geometric properties of the best-response correspondence. The geometric approach greatly shortens the exposition, and it suggests some possible extensions to more difficult convergence conjectures.
    10 schema:genre research_article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N7417a9135ca14a90bc58ffe623ac5a94
    14 Nc67c3801745240d6bdd1f3d5feeba629
    15 sg:journal.1136838
    16 schema:name Fictitious play in 2×2 games: A geometric proof of convergence
    17 schema:pagination 923-933
    18 schema:productId N1bf3d3d5f7f540d68ee4cb2be028f687
    19 N277046a9882a450e992a1396761b04ba
    20 N32b64a9c31dc4b13965c59b55291807c
    21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032827484
    22 https://doi.org/10.1007/bf01213819
    23 schema:sdDatePublished 2019-04-11T13:27
    24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    25 schema:sdPublisher N9fba4b0d1d1b4d8283249d5c07fd9a2c
    26 schema:url http://link.springer.com/10.1007/BF01213819
    27 sgo:license sg:explorer/license/
    28 sgo:sdDataset articles
    29 rdf:type schema:ScholarlyArticle
    30 N1bf3d3d5f7f540d68ee4cb2be028f687 schema:name readcube_id
    31 schema:value 9c62870fe8b921646550be6b6fc4bd64deb946ddb995fc985744ab4e1cfddcdc
    32 rdf:type schema:PropertyValue
    33 N277046a9882a450e992a1396761b04ba schema:name doi
    34 schema:value 10.1007/bf01213819
    35 rdf:type schema:PropertyValue
    36 N32b64a9c31dc4b13965c59b55291807c schema:name dimensions_id
    37 schema:value pub.1032827484
    38 rdf:type schema:PropertyValue
    39 N3b66efc21df049eaa2f1765f7c9bd449 rdf:first Ne7d2aef077ad47eba3339aa341dbb4fc
    40 rdf:rest Nd96a3f8ddda84d85a059202c9be08407
    41 N7417a9135ca14a90bc58ffe623ac5a94 schema:volumeNumber 4
    42 rdf:type schema:PublicationVolume
    43 N9fba4b0d1d1b4d8283249d5c07fd9a2c schema:name Springer Nature - SN SciGraph project
    44 rdf:type schema:Organization
    45 Nc67c3801745240d6bdd1f3d5feeba629 schema:issueNumber 6
    46 rdf:type schema:PublicationIssue
    47 Nd102df9d8957464e9759d710d085e754 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    48 schema:familyName Polak
    49 schema:givenName Ben
    50 rdf:type schema:Person
    51 Nd96a3f8ddda84d85a059202c9be08407 rdf:first Nd102df9d8957464e9759d710d085e754
    52 rdf:rest rdf:nil
    53 Ne7d2aef077ad47eba3339aa341dbb4fc schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    54 schema:familyName Metrick
    55 schema:givenName Andrew
    56 rdf:type schema:Person
    57 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Mathematical Sciences
    59 rdf:type schema:DefinedTerm
    60 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Pure Mathematics
    62 rdf:type schema:DefinedTerm
    63 sg:journal.1136838 schema:issn 0938-2259
    64 1432-0479
    65 schema:name Economic Theory
    66 rdf:type schema:Periodical
    67 sg:pub.10.1007/bf00536300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035297058
    68 https://doi.org/10.1007/bf00536300
    69 rdf:type schema:CreativeWork
    70 https://doi.org/10.1006/game.1996.0044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048802310
    71 rdf:type schema:CreativeWork
    72 https://doi.org/10.2307/1969530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069674905
    73 rdf:type schema:CreativeWork
    74 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
    75 schema:name Department of Economics, Harvard University, 02138, Cambridge, MA, USA
    76 Society of Fellows, Harvard University, 02138, Cambridge, MA, USA
    77 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...